
CSX600 Datasheet

Advanced Product Data

Description

The CSX600 is a high performance, low power floating point coprocessor. It is designed for use in a variety of applications in high performance computing and embedded systems.

The CSX600 is the first product in ClearSpeed's family of floating point application accelerators. The CSX processors are based around ClearSpeed's multithreaded array processor (MTAP) architecture. This architecture has been developed to address the implementation issues of high-performance systems by providing unparalleled performance-per-watt.

High performance

- 25 GFLOPS sustained
- 250 MHz core clock
- Power efficient architecture

Features

- Professional Software Development Kit (SDK)
- 128 Kbyte on-chip SRAM
- Supports up to 8 Gbytes of DDR2 DRAM
- 8 Kbyte instruction and 4 Kbyte data caches
- Array of 96 Processing Elements
- FPU acceleration on every PE
- Two high speed data ports.
- Dedicated host interface port
- JTAG boundary scan

Applications

Designed for data-intensive and high-compute applications

- Network processing
- Radar systems
- Bio-informatics
- Signal processing
- Medical imaging

Electrical

- 1.2V core supply
- 1.8V I/O pad supplies
- 1.5V analog supplies

Mechanical/thermal

- 35 mm x 35 mm thermally enhanced flip-chip BGA package
- 1,011 balls on 1 mm pitch
- 433 signal pins (including analog supplies)

PRELIMINARY TECHNICAL DATA

Overview

The CSX600 comprises a multi-threaded array processor (MTAP) core, external DRAM interface, high-speed interfaces and embedded SRAM integrated onto a single chip. All subsystems on the chip are interconnected via the ClearConnect on-chip network.

Processor core

The MTAP architecture provides an exceptionally powerful and scalable processing solution, based on an array of tens to thousands of Processing Elements (PEs). Each PE has its own local memory and I/O capability, making the architecture ideally suited for applications which have high processing and/or bandwidth requirements. The inherently scalable array architecture is also highly area and power efficient.

The MTAP core contains an array of 96 Processing Elements (PEs). The PEs include multiple processing units and have high level of internal instruction-level and data parallelism. Each PE also has its own local memory providing a high bandwidth access to frequently used data.

Memory hierarchy

The CSX processor has a hierarchical memory system consisting of: register files, PE memory, caches, on-chip memory and external DRAM.

External memory is connected via a 64-bit DDR2 DRAM interface. When used with a 72-bit wide DRAM array this provides Error Checking and Correction (ECC). Each processor supports up to 8 Gbytes of local DRAM.

The processor supports 64-bit addressing so that large data sets can be processed. The 64-bit address space is flexibly mapped into a 48-bit physical address space distributed across multiple processors. For embedded systems and backward compatibility a simple 32-bit addressing mode is provided.

On-chip SRAM is included for frequently accessed code and data.

The on-chip DMA controller can be programmed to transfer data to and from the external memory interface and any other device on the ClearConnect bus.

ClearConnect bus

The ClearConnect bus used as the interconnect on the CSX600 is a packet switched on-chip network that provides high bandwidth and low power consumption. It supports multiple concurrent transfers, thus providing extremely high aggregate bandwidth. The bus is also used, via the bridge ports described below, to provide communication between CSX processors using a consistent protocol and addressing scheme.

Host interface and debug port (HDP)

The HDP is the means by which the CSX600 is configured, booted and controlled by a host processor. It carries master and slave transactions in both directions, and has full access to the register and memory space of the device.

The external interface uses a low pin-count interface that is optimized to allow a host to have low-cost access to a number of CSX600 devices on a board.

PRELIMINARY TECHNICAL DATA

Interrupt & semaphore unit (ISU)

The Interrupt and Semaphore Unit supports the synchronization between threads and with external events. Multiple processors may perform synchronization events, for example to assist in communication via shared memory, through operations on the set of hardware semaphore elements contained in this block. Similarly, synchronization with a host processor may be performed via conversion of semaphore events to interrupt events. Both pin and message-signalled interrupts are supported for flexible support of multiple devices in various host environments.

ClearConnect bridge ports (CCBR)

The internal bus is made available at two ports which can be interconnected with no glue logic to construct multiprocessor systems. This enables system performance to be scaled to meet the requirements of the application. Data can be routed directly from one bridge port to the other without impacting on any other internal bus traffic.

These ports use double data rate interfaces to minimize the pin count. If not fully used, they can be selectively turned off to reduce power consumption.

PRELIMINARY TECHNICAL DATA

Architecture

The CSX600 integrates a multi-threaded array processor (MTAP) core, on-chip SRAM, a DDR2 DRAM interface, a host/debug port and chip-to-chip bridge ports.

Processor core

The processor core is shown in the block diagram (Figure 1). The processor consists of a control unit, a "mono" (scalar) execution unit, a "poly" (data parallel) execution unit and an I/O subsystem.

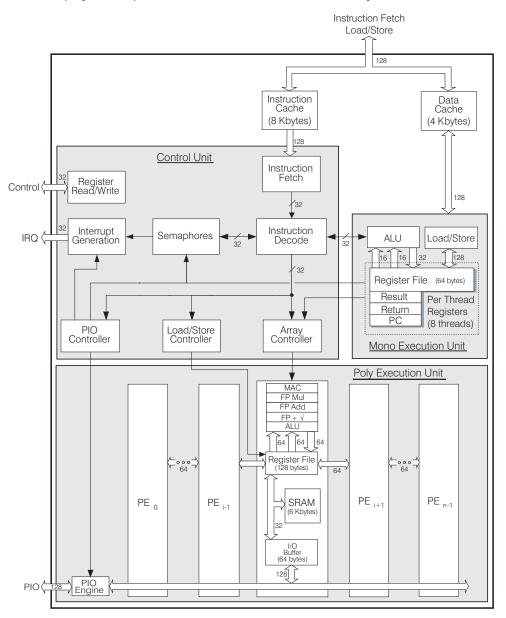


Figure 1 Processor core block diagram

PRELIMINARY TECHNICAL DATA

The main components of the processor are:

Execution units:

This consists of two main parts:

- The *mono* execution unit which acts on mono (non-parallel) data and handles program flow control and I/O functions;
- The *poly* execution unit which contains an array of Processing Elements (PEs) which act on poly (parallel) data.

Control unit: fetches and decodes instructions. The single, unified instruction stream fetched and decoded by the control unit. Mono instructions are despatched to the mono execution unit, poly instructions are sent to the poly execution unit;

Caches: instruction and data caches to speed accesses to external code and data;

I/O: as well as loads and stores from the mono and poly execution units, there is a *Programmed I/O* (PIO) mechanisms which allows the poly execution unit to do loads and stores to external memory.

It is the poly execution unit and its array of PEs that provide the processor's massive processing power and memory bandwidth. The mono and poly execution units have basically the same architecture and instruction set. The tightly integrated mono and poly execution units mean that the processor as a whole is efficient for simple sequential code, as well as when processing large amounts of data in parallel.

The various functional units within the execution units (e.g. ALU, FPU, I/O, etc.) can operate concurrently.

Control unit

The instruction fetch and issue hardware supports multi-threaded execution. Thread switching is under software control and may be triggered in response to events such as the completion of an operation by one of the I/O engines. By providing support in hardware, the need for a real-time kernel for the MTAP processor is removed. The hardware supports 8 threads; hardware semaphores are used to synchronize threads with other threads and with hardware units.

To optimize performance, the processor includes instruction and data caches.

Features

- Hardware support for 8 threads;
- 128 8-bit semaphores;
- Unified 32-bit instruction set;
- 8 Kbyte instruction cache, 4-way, 512 lines x 4 instructions, with manual and auto pre-fetching (configurable horizon);
- 4 Kbyte data cache, 4-way, 256 lines x 16 bytes;
- Interrupt generation;
- Debug support;
- Event counters for PAPI profiling support.

Mono execution unit

As well as handling mono data, the mono unit is responsible for program flow control (branching), thread switching and other control functions. The mono execution unit also has overall control of I/O operations. Results from these operations are returned to a register in the mono unit. The mono execution unit contains:

- ALU
- 64-bit FPU
- Multiple 128-byte register files

ClearSpeed[®]

PRELIMINARY TECHNICAL DATA

Poly execution unit

The processor core contains an array of 96 PEs. The array provides both compute power and high bandwidth storage. The PE array operates on a Single-Instruction Multiple-Data (SIMD) model, processing multiple data items in parallel.

Each PE contains:

- 128-byte PE register file;
- 6 Kbytes of PE SRAM;
- 16-bit MAC with 64-bit accumulator;
- Single and double precision Floating Point Unit (FPU), with dual issue pipelined add and multiply;
- Support for integer and floating point divide and square root.

Input-output

The MTAP processor supports a Programmed I/O (PIO) channel designed for transferring variable amounts and types of data under software control. This is typically used to access external memory or peripherals.

- 128-bit PIO data channel;
- Transfer sizes of 8, 16, 32, 64 bytes per PE;
- Addressing modes: addresses and strided;
- Synchronized via semaphores.

ClearConnect bus

The ClearConnect bus is a packet switched on-chip network; on the CSX600 it is configured as two independent channels. One of these is the main system bus, designed for high bandwidth data movements, the other is a peripheral bus, designed for read/write access to control registers and interrupt messages. Both system bus and peripheral bus are pipelined and split transaction for maximum performance.

The system bus runs at core clock speed, is 128 bits wide and can transfer up to 128 bytes in a single transaction. The peripheral bus is 32 bits wide and can transfer 4 bytes in each transaction.

By means of the two Bridge Ports described below, the ClearConnect bus can be extended across multiple CSX600 devices and to system logic implemented in other devices such as FPGAs. All memory targets are then accessible by all masters on the global bus, using a 48-bit physical address. Master and target units are uniquely identified by means of device IDs that are assigned to individual devices at boot time, and internal node IDs that are fixed. The combination of device & node ID forms a geographic bus address that is unique to each unit. Part of the master's logical address is used, by means of a programmable address aperture unit, to map logical addresses to physical addresses that reside on particular bus targets.

Interrupt and semaphore unit

The ISU contains three inter-related sub units. A Global Semaphore Unit (GSU) contains 32 hardware semaphores that are accessible by processor cores in order to perform coherent inter-processor communications. Semaphore operations may be explicitly added to software to synchronize the working of different processors across the inter-chip network. These inter-processor global semaphore operations are an extension of the thread-to-thread hardware semaphores, allowing the multi-threaded model to be applied to numerous CSX600 devices working in cooperation.

PRELIMINARY TECHNICAL DATA

The Interrupt Unit (IU) and Interrupt Generator (IG) sub-units collect, mask and format interrupts from various sources in the device, including event notification from the processor core, exception conditions from the device interfaces, and also semaphore state from the GSU for when semaphore events require conversion into interrupts. The IU/IG can generate both message-signalled interrupts for host systems that can support them, and also output a dedicated interrupt request signal on pin **HIRQ_N**.

The ISU also supports conversion of interrupts to semaphore signal operations. This allows a processor core thread to synchronise to any event that causes an interrupt. The operation of the ISU is fully programmable via register control.

SRAM

The CSX600 also includes 128 Kbytes of on-chip SRAM which provides the processor with low latency access to code and data. This memory is organized as 8 K words of 16 bytes.

The memory supports fully pipelined operation, one data word per cycle, for contiguous reads or writes (to random addresses). For mixed reads and writes, the memory supports reads and writes on consecutive cycles with no dead cycles.

Typically, the SRAM is used to store items for which low-latency access from the processor core is important, such as instruction code and frequently used data. The SRAM is accessible from any bus master in the system, including the host processor.

DRAM controller & DMA

In addition to the on-chip SRAM described above, the CSX600 has an external interface for direct connection to a DDR2 DRAM array of up to 8 GBytes. This appears as another target on the system bus, and provides for bulk storage of large data sets.

The controller is fully pipelined and can maintain near-peak data bandwidths for bursts of read or write transactions, within the limitations of empty cycles caused by bank conflicts and read-write turn-around of the DRAM devices themselves.

The DRAM controller runs asynchronously to the device core, from a clock generated by a dedicated internal PLL. The multiplication ratio from the reference clock input, which it shares with the core clock PLL, is programmed by control registers.

An attached programmable DMA engine permits data transfer to or from the external DRAM to occur in the background in parallel with the processor core executing other operations. The DMA unit may be programmed by either the host processor or the device processor core. DMA transfers can be chained together via transfer description records stored anywhere in system memory. DMA operation is integrated into the hardware semaphore mechanisms for inter-processor synchronisation.

PRELIMINARY TECHNICAL DATA

Interfaces

A set of interfaces allow the CSX600 to be used in different types of systems. All interfaces are proprietary and require use of external system logic, except for the local memory interface, which connects directly to standard DDR2 DRAM devices.

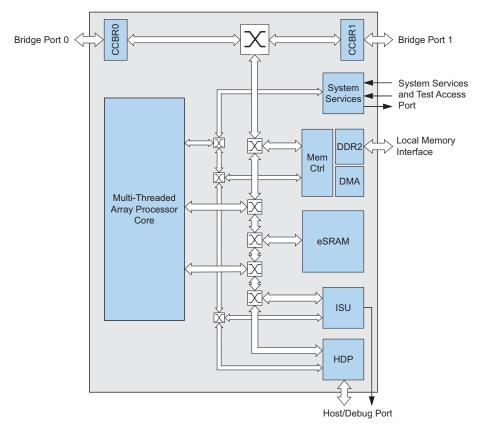


Figure 2 CSX600 external interfaces

All interfaces that carry data operate asynchronously to each other and to the processor core. This allows the clock frequency of core and all interfaces to be optimized for the application.

These interfaces are described in more detail below.

The pin counts in the headings below include analog supplies and references but not core or I/O power & ground.

CSX600 I/O signal types

The I/O pins of CSX600 have different signalling standards according to their function. All I/O pins operate from 1.8V supplies, which are separated by interface. The I/O pins all have high-side and low-side clamping diodes, and so cannot tolerate applied voltages outside of their **VDDIO** to **VSS** range. In particular, this means that I/Os are not 3.3V tolerant.

PRELIMINARY TECHNICAL DATA

1.8V CMOS

All configuration and control pins use 1.8V LVCMOS I/Os. Some inputs include weak pull-up resistors, those that do not must not be left floating. The LVCMOS outputs have a drive strength that self-series terminates into a 50 ohm line, and do not require parallel termination.

1.8V HSTL

The Host Debug Port is designed to operate on a multidrop bus, and all I/O pins use HSTL signalling. All signals require appropriate termination. A reference voltage is required for the HSTL input pins, and is applied to the device on its **HVREF** pin.

1.8V SSTL

The three high bandwidth ports of the device use SSTL I/O pins. The device contains programming registers that control whether the pin groups operate as SSTL class I or class II outputs. In point-to-point applications, class I is typically used. For the local memory interface, some external termination is required on address and control lines, as described below.

The SSTL pads employ on-die termination (ODT) which is controlled either by register or dynamically by the device logic, in order to eliminate the need for external termination resistors.

A reference voltage is required for all SSTL input pins. There is one **VREF** input for approximately every nine inputs.

1.8V differential SSTL clock inputs

All clock inputs on the CSX600 (except for HCLK) are differential SSTL inputs. These may be used with differential clock sources, for lowest jitter and radiated emissions. They may also be used as single ended inputs, by feeding a clock input to the CLK_P input, and tying the CLK_N input to a reference voltage in the centre of the clock signal swing, and typically VDDIO / 2.

Host interface and debug port (28 pins)

Use of the Host/Debug Port (HDP) is required for booting and controlling the device. It also provides access to the processor debug features. It has byte-wide data ports, one each for input and output. The ports are designed for multi-drop bus connections when more than one CSX600 device is used. The HDP is both a slave interface, for a host system to control the device, and a master interface, by which the device can access memory or other hardware functions that are part of host logic or associated with in-circuit debug hardware.

The HDP has its own clock input, which is typically run at a lower clock frequency than the device core. The HDP I/O pins are 1.8V class 1 HSTL, requiring external parallel termination.

The HDP uses two byte-wide interfaces for input (the *downstream* interface) and output (the *upstream* interface), and both interfaces may operate simultaneously since they share no pins, other than the clock input **HCLK**. A media access control (MAC) layer allows provision for external multidrop connection so that connecting a host or debug adaptor to multiple CSX600 chips is straightforward. The only signals wired to individual devices of a multiple processor system are pins **HREQ** and **HGNT**, all others may be connected to a common bus.

Following reset, multiple interconnected CSX600 devices are enumerated by the host system through their HDP interfaces. The host performs a special enumeration cycle to each device present by asserting **HGNT** while applying a device number to pins **HRXD[7:0]**, which identifies its unique position on the multi-device network.

Name	Width	I/O Type ^a	Description
HCLK	1	I	Clock input for HDP. All HDP I/Os are synchronous to this, except where indicated.
HREQ	1	0	Request output to arbiter. Transmitter asserts when it wishes to use upstream channel.
HGNT	1	I	Grant input from arbiter, asserted to indicate transmitter may use upstream channel.
HIRQ_N	1	OD	Interrupt request output. Asynchronous. Active low open drain.
HERR	1	OD	HDP error output, asserted for 1 or more HCLK cycles to indicate error. Active high open drain.
HRXD[7:0]	8	I	Receiver data input bus.
HRXVAL	1	1	Receiver valid data qualifier input.
HRXEOP	1	I	Receiver end of packet input.
HRXSTP	1	OD	Receiver flow control output. Active high open drain.
HVREF	1	I	Voltage reference input for all HDP pins. Nominally VDDIO2 * 0.5.
HTXD[7:0]	8	ОТ	Transmitter data bus output.
HTXVAL	1	10	Transmitter data valid qualifier output. Also used as input to detect packet delineation.
НТХЕОР	1	ОТ	Transmitter end of packet output.
нтхѕтр	1	1	Transmitter flow control input.

Table 1 HDP interface signals

a. I = input, O = output, IO = input/output, OD = open drain, OT = tristate output

The HDP handles bus transactions transparently, one at a time. Each is treated as a stream of bytes, with header and data payload encoded according to the transaction type. The minimum length transaction encoding is 6 bytes. The final byte in a transaction is marked with the assertion of the corresponding EOP signal.

The HDP operates asynchronously to the device core from a dedicated clock input **HCLK**. All signals are synchronous to **HCLK** except for open drain output **HIRQ_N** which is asynchronous. The HDP contains buffering to match the slow byte-wide operation of its interfaces to the faster and wider internal bus.

All HDP I/O pads are 1.8V HSTL Class 1. Input pads require a voltage reference to applied to pin HVREF.

Bus bridge ports (212 pins)

Two high speed ports, Port 0 and Port 1, enable data to be transferred to and from the device. Each port is a bidirectional 90-bit wide interface that uses DDR and clock forwarding to achieve high bandwidth. The ports are a continuation of the internal ClearConnect bus, which can be 'bridged' from one device to another to form a continuous packet switching network.

Use of the bridge ports is optional. The only other data port, however, is the narrow HDP interface so most systems will use at least bridge Port 0 as a data interface to the host system or other data sources and sinks. In multi-

Name	Width	l/O Type ^a	Description
PCKIN_P	1	I	Differential clock reference input for Bridge Ports transmit
PCKIN_N	1	I	clock PLL.
PODOCK, POD7CK	2	10	Bidirectional Bridge Port 0 clocks
P0D[6:1]	6	10	Bidirectional Bridge Port 0 control
P0D[79:8]	72	10	Bidirectional Bridge Port 0 data bus
P0S[9:0]	10	10	Bidirectional Bridge Port 0 data strobes
POVREF[9:0]	10	1	Port 0 voltage reference inputs
P1D0CK, P1D7CK	2	10	Bidirectional Bridge Port 1 clocks
P1D[6:1]	6	10	Bidirectional Bridge Port 1 control
P1D[79:8]	72	10	Bidirectional Bridge Port 1 data bus
P1S[9:0]	10	10	Bidirectional Bridge Port 1 data strobes
P1VREF[9:0]	10	I	Port 1 voltage reference inputs
AVDD6, AVDD4, AVDD3 ^b	3	1	PLL analog supply
AVSS6, AVSS4, AVSS3	3	1	PLL analog ground

Table 2 Bridge port interface signals

a. I = input, IO = input/output

b. AVDD3,AVDD4 and AVSS3,AVSS4 used by CCBR0

AVDD6 and AVSS6 used by CCBR1

processor systems, or where a single processor needs multiple interfaces to external logic, Port 1 may also be used. In multi-processor systems, the processors are connected in a daisy chain. If the bridge ports are not used they can be disabled to reduce power consumption.

Although the port is bidirectional, to reduce the number of pins required, upstream and downstream traffic flow independently of one another. Port direction is arbitrated by flow-control logic within the ports. When there is traffic flowing in both directions, the port will periodically reverse to share bandwidth between the flows. The ports contain buffering and programmable thresholds that can be set to optimize the bandwidth and latencies in various application modes.

The interface consists of 10 lanes of 9 signals; each lane being 8 data + 1 strobe. Data is transferred on both edges of the strobe. Signals within a lane must have their board traces closely skew matched at the higher operating speeds.

Signal lane 0 differs from the other nine groups in that it carries clocking and control information rather than data. Although the lane is the same at the physical level, the nine signals are formatted into bidirectional and unidirectional sub-groups. When configured as a down-facing port, **PnDOCK** is a forwarded clock output. The connected device will have its corresponding port configured as up-facing and there **PnDOCK** will be used as input clock reference to a deskewing PLL in the receiver data path. The forwarded clock in the reverse direction is output from the up-facing port and input to the down-facing port, this time on pin **PnDO7** on both devices.

Lane	Signals	Strobe
0	PnD0CK, PnD7CK, PnD[6:1]	PnS[0]
1	PnD[15:18]	PnS[1]
2	PnD[23:16]	PnS[2]
3	PnD[31:24]	PnS[3]
4	PnD[39:32]	PnS[4]
5	PnD[47:40]	PnS[5]
6	PnD[55:48]	PnS[6]
7	PnD[63:56]	PnS[7]
8	PnD[71:64]	PnS[8]
9	PnD[79:72]	PnS[9]

Table 3 Assignment of control and data signals to bus lanes

In a similar manner, signals **PnD[2:1]** are protocol signaling pins which always travel from down-facing port to up-facing port, and the corresponding signals in the opposite direction are carried on **PnD[6:5]**. Signals **PnD[4:3]** are bidirectional and reverse direction in conjunction with the data bus **PnD[79:8]**.

Pins **PnD[79:8]** in lanes 1 to 9 form a 72-bit bus which carries bus transactions in the form of header plus data payload with optional byte enables. The encoding of the header fields on to the device pins varies with transaction type.

The bridge ports transmit data paths operate asynchronously from the device core, on clocks generated by a PLL whose reference is the differential input pin pair **PCKIN_P** and **PCKIN_N**. The input clock may be applied in single-ended mode by appropriate biasing of **PCKIN_N**. In addition, the two ports may run at different, although related, clock frequencies for systems where one port is connected to an external device that must run, for example, at a lower clock speed. Clock speeds are programmed through device registers via the HDP. The receive data paths run at whatever frequency is applied as the forwarded clock from the transmit port of the device to which it is connected.

The PLLs can be bypassed by disconnecting the corresponding AVDDn supply.

Bridge port I/O pins

All pins are bidirectional 1.8V SSTL (JEDEC standard JESD8-15a). Typically the pins are used in Class I mode although under register control they can be operated in Class II mode. When acting as receivers the pins have on-die termination and so external termination is not required. All pads require a voltage reference input; there is one VREF pin for each of the 10 groups of signal pins.

Local memory interface (158 pins)

The CSX600 uses DDR2 DRAM for its local memory. The data interface is 64 bits wide, with an additional 8 data bits for optional error correcting code (ECC). The CSX600 DRAM controller is software configurable for a variety of DDR2 DRAM types. The clock frequency is programmable through a PLL. The device supplies the clocks and all other signals required by the DRAMs.

Up to four ranks of devices are supported, with up to eight internal banks each, and an address width of up to fifteen bits. The interface may be operated with or without error correction, with memory width of 64 bits or 72 bits respectively. The DRAM array is operated with a DQ to DQS ratio of eight.

Name	Width	I/O Type ^a	Description	
MA[14:0]	15	0	Memory address	
MBA[2:0]	3	0	Memory bank address	
MDQ[63:0]	64	10	Memory data bus	
MCB[7:0]	8	10	Memory data check byte	
MDM[8:0]	9	10	Memory data masks	
MDQS[8:0]	9	0	Memory data strobes	
MDSG[8:0]	9	0	Memory data strobe. Should be left unconnected.	
MRAS_N	1	0		
MCAS_N	1	0	Memory command	
MWE_N	1	0		
МСКЕ	1	0	Memory clock enable	
MS[3:0]_N	4	0	Memory rank selects	
MODT[3:0]	4	0	Memory on-die termination control	
MCK[6:0]_P	7	0	Memory differential clock outputs	
MCK[6:0]_N	7	0		
MVREF[9:0]	10	I	Memory voltage reference inputs	

Table 4 Local memory interface signals

a. I = input, O = output, IO = input/output

The LMI I/O pins are 1.8V SSTL operating in class I or class II, programmable via register bits for the different signal types. On-die termination is provided for all bidirectional signals.

PRELIMINARY TECHNICAL DATA

System services (28 pins)

A collection of device resources such as clocking and reset are collectively termed System Services.

Name	Width	I/O Type ^a	Description
AVDD2-AVDD1	2	1	PLL analog supplies
AVSS2-AVSS1	2	1	PLL analog grounds
CKIN_P	1	1	Differential PLL reference input
CKIN_N	1	1	
CNFG[11:0]	12	I	Configuration bus. Sampled before and after deassertion of RST_N
RST_N	1	1	Asynchronous reset input
THDN, THDP	2	10	Thermal monitor diode connection

Table 5 System services signals

a. I = input, IO = input/output

External pins are 1.8V LVCMOS except for CKIN_P and CKIN_N which are differential 1.8V SSTL.

Reset

The entire device is held in reset whenever the asynchronous input **RST_N** is asserted. **RST_N** should be asserted during power-up. Once **CKIN_P** (and its complement **CKIN_N**) are stable, **RST_N** may be de-asserted. Once the device has completed internal initialization with the core PLL stable, the HDP will accept access from the host system. The device may be entirely reset by asserting **RST_N** again at any time.

Clocking

The main core clock is generated by a PLL from a differential input reference clock **CKIN_P**, **CKIN_N**. The input clock may also be applied in single-ended mode by appropriate biasing of **CKIN_N**. The core clock is multiplied up by a ratio that is programmed through the configuration pins **CNFG[11:0]**. Differential inputs are provided for the PLL reference clocks to minimize jitter.

Configuration pins

Device configuration is performed via software access to control registers via the HDP interface. The device core clock, however, is configured during reset by means of 12 configuration input pins **CNFG[11:0]**. These pins are sampled both before and after de-assertion of **RST_N**, to apply 24 bits of configuration settings to the core clock PLL, such as multiplication ratio and optimization of jitter performance. See "Configuration data" on page 30 for more information.

Thermal monitor

Access to a thermal monitor diode is provided via a pair of dedicated pins, **THDN** and **THDP**. By connecting an appropriate device, such as the National Instruments LM86, this enables measurement of die temperature during operation.

PRELIMINARY TECHNICAL DATA

Test access port (TAP)

The TAP conforms to IEEE 1149.1 and supports full EXTEST on all pins (except analog functions).

Name	Width	I/O Type ^a	Description
тск	1	1	Test clock input
TMS	1	1	Test mode select
TDI	1	I	Test data input
TDO	1	0	Test data output
TRST_N	1	1	Test asynchronous reset. Must be pulsed or held low from power-up

Table 6 TAP signals

a. I = input, O = output

All TAP pins are 1.8V LVCMOS with weak pull-ups.

TAP instructions

There are two registers which are accessed through the TAP controller:

- Identification (read only);
- External boundary scan (IO pads).

The available TAP instructions are shown in Table 7.

Instruction Code	Instruction	Register Accessed	Description
1111	BYPASS		
0000	EXTEST	Boundary Scan	Used for test of device connectivity in assembled system
0001	SAMPLE		
0010	IDCODE	Identification	Used to identify device as part of a chain.
0100	USERCODE	User code	

Table 7 TAP instructions

Identification

The content of the (read only) CSX600 identification register is 100053EB (hex) as defined in Table 8.

Version (4 bits)	Part Number (16 bits)	Manufacturer (11 bits)	LSB
хххх	0000 0000 0000 0101	0011 1110 101	1

Table 8 CSX600 identification register

PRELIMINARY TECHNICAL DATA

All CSX600 parts will have the same Part Number field; the Version field will be updated for each revision.

The content of the (read only) CSX600 user code register value is 0000500B (hex).

PRELIMINARY TECHNICAL DATA

DC and thermal characteristics

Recommended operating conditions

Parameter		Test Conditions	Min	Тур	Max	Units
VDD	Core supply voltage		1.14	1.2	1.26	V
VDDIO	External (I/O) supply voltages		1.65	1.8	1.95	V
AVDD	Analog supply voltages			1.5		V
Tcase	Case temperature		0		70	°C
Tdie	Die temperature		0		100	°C

Table 9 Recommended operating conditions

Supply sequencing

The voltage applied to **VDD** must never exceed the voltage applied to any of the **VDDIO** supplies. Particular care should be taken to ensure that **VDD** is never driven higher than **VDDIO** during power-up and power-down.

To avoid the possibility of damage to I/O pads, no I/O signal should have voltages applied outside of their corresponding **VDDIO** supply. Particular care should be taken at power-up not to apply signals to I/O pins before **VDDIO** is applied. The applied I/O voltage may track the rise of **VDDIO**, as long as the Absolute Maximum ratings are observed.

Handling and assembly

The CSX600 meets JEDEC MSL (Moisture Sensitivity Level) 4. Once removed from the moisture-proof packaging, the components have a floor life of 72 hours (at or below 30°C / 60% relative humidity). After this they will require rebaking at 125°C for 24 hours.

Warning: ESD (electrostatic discharge) sensitive device

Electrostatic charges of up to several thousand volts can accumulate on test equipment and the human body, and can discharge without detection. Although the CSX600 includes ESD protection circuitry, permanent damage may be caused to devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid damage and loss of functionality.

Absolute maximum ratings

Core supply voltage (VDD)
External I/O supply voltages (VDDIO)
Analog supply voltages (AVDD)
Minimum input voltage VSS-0.3V
Maximum input voltage VDDIO+0.3V
Operating die temperature 125°C

PRELIMINARY TECHNICAL DATA

Soldering temperature ¹	l	250°C
------------------------------------	---	-------

Note: These are stress ratings only. Conditions beyond those listed above may cause permanent damage to the device. Functional operation at these or any other conditions outside the normal operating range is not implied. Exposure to absolute maximum ratings for extended periods may adversely affect device reliability.

Termination & reference voltages

HDP

HDP I/O pads are 1.8V HSTL signals. And the pads require a voltage reference of 1/2 VDD IO. The **VREF** signal must be decoupled at the pin, and the signal kept away from sources of interference.

CCBR

CCBR pins are 1.8V bidirectional SSTL signals. When acting as receivers the pins have on-die termination and so in most applications external termination is not required. Because of this all pads require a voltage reference input of 1/2 **VDDIO**; there is one **VREF** pin for each of the 10 groups of signal pins. **VREF** signals must be decoupled at the pin, and the signal kept away from sources of interference.

The **PCKIN_P** and **PCKIN_N** pins both have internal split termination of 150 ohm to **VDDIO2** and 150 ohm to **VSS**.

LMI

LMI pins are 1.8V bidirectional SSTL signals. When acting as receivers the pins have on-die termination and so in most applications external termination is not required. The memory reference voltage, **MVREF**, requires a voltage level of 1/2 **VDDIO**. **VREF** signals must be decoupled at the pin, and the signal kept away from sources of interference.

Analog supplies

The PLLs on the chip require a low noise 1.5V supply to avoid clock jitter. The requirements for analog supply decoupling are shown in Figure 3. An LC pair as shown is required for every **AVDDn** pin that is powered. Example component types for L and C are shown in Table 10. These must be located right next to each power pin.

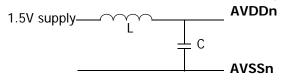


Figure 3 Analog supply decoupling

^{1.} For lead-free e1 parts using SnAgCu BGA balls

PRELIMINARY TECHNICAL DATA

Component	Example
L	Murata BLM15AG601SN1D
С	Murata GRM155R60J105KE19

Table 10 Example decoupling components

LVCMOS DC characteristics

Paramete	r	Test Conditions	Min	Тур	Мах	Units
VIH	High Level Input Voltage		0.65 * VDDIO		1.95	V
VIL	Low Level Input Voltage		0		0.35 * VDDIO	V

Table 11 DC characteristics for LVCMOS pins

HSTL DC characteristics

Param	eter	Test Conditions	Min	Тур	Max	Units
VIH	High Level Input Voltage		0.65 * VDDIO		1.95	V
VIL	Low Level Input Voltage		0		0.35 * VDDIO	V

Table 12 DC characteristics for HSTL pins

SSTL DC characteristics

Paramet	er	Test Conditions	Min	Тур	Мах	Units
VIN	DC Input Signal Voltage		-0.3		VDDIO + 0.3	V
VID	DC Differential Input Voltage		0.25		VDDIO + 0.6	V

Table 13 DC characteristics for SSTL pins

Reference voltages

TBD

PRELIMINARY TECHNICAL DATA

AC characteristics

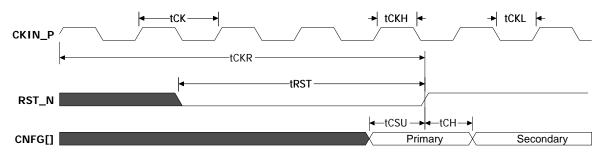
Test conditions

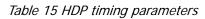
All output timings are measured driving a 50 ohm resistive load.

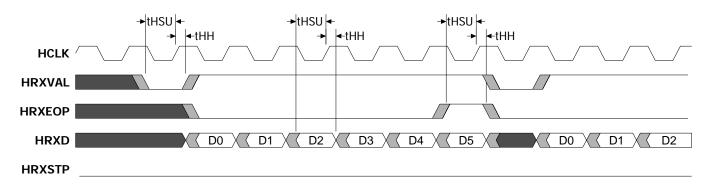
System services

Name	Min	Max	Comment	Units
tCK	10	30	Period, core reference clock CKIN_P, CKIN_N	ns
tCKH	3		Pulse width high, core reference clock CKIN_P, CKIN_N	ns
tCKL	3		Pulse width low, core reference clock CKIN_P, CKIN_N	ns
		100	Cycle-cycle jitter, core reference clock CKIN_P, CKIN_N	ps
tRST	100		RST_N assertion pulse width	ns
tCKR	0		CKIN stable to RST_N deassertion	ns
tCSU	10		Setup, CNFG to RST_N deassertion	ns
tCH	10		Hold, RST_N deassertion to CNFG	ns

Table 14 System services timing parameters




Figure 4 Reset and configuration timing


PRELIMINARY TECHNICAL DATA

Host interface and debug port

All HDP timings are relative to synchronous input clock HCLK.

Name	Min	Max	Comment	Units
tHCK	6.0		Period, clock input HCLK	ns
tHSU	1.0		Setup, input to HCLK	ns
tHH	0.9		Hold, input from HCLK	ns
tHCO	0.5	3.0	Delay, HCLK to any output	ns

Figure 5 Host/debug port packet receive

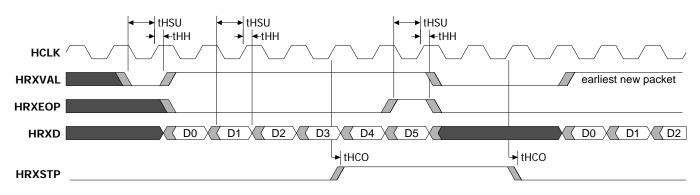


Figure 6 Host/debug port packet receive with flow control

PRELIMINARY TECHNICAL DATA

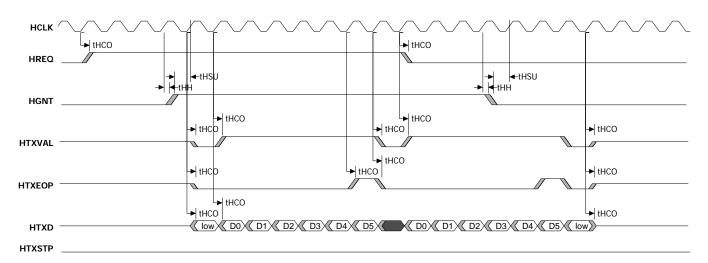


Figure 7 Host/debug port packet transmit

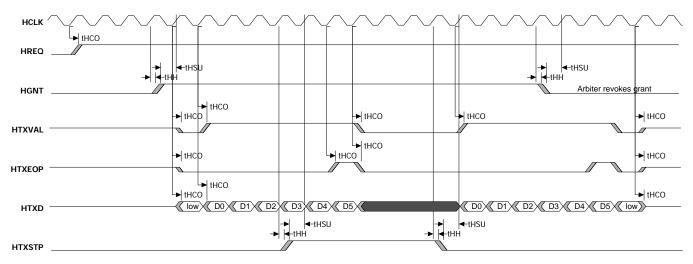


Figure 8 Host/debug port packet transmit with flow control and grant revocation

PRELIMINARY TECHNICAL DATA

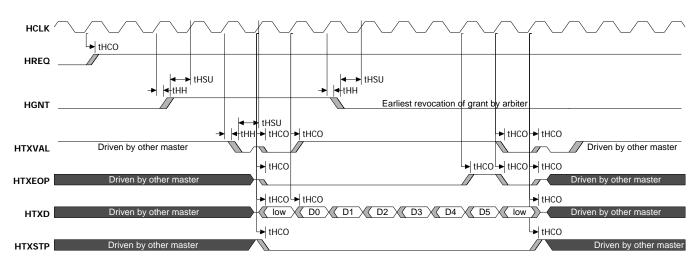


Figure 9 Host/debug port transmit arbitration

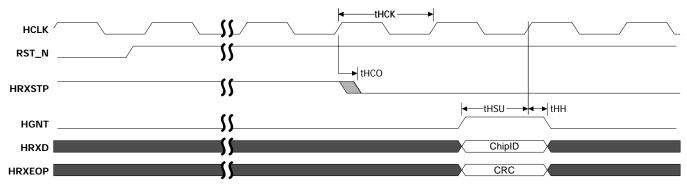


Figure 10 Host/debug port initialization

PRELIMINARY TECHNICAL DATA

Bridge ports

The two bridge ports have identical but fully independent timing parameters. They may be programmed to operate at the same or different transmit clock frequencies. In the tables below, signal names refer to Port 0 only. Port 1 timing is identical.

Name	Min	Max	Comment	Units
tPCK	10	30	Period, bridge port transmit reference clock PCKIN_P, PCKIN_N	ns
tPCKH	3		Pulse width high, bridge port transmit reference clock PCKIN_P, PCKIN_N	ns
tPCKL	3		Pulse width low, bridge port transmit reference clock PCKIN_P, PCKIN_N	ns
		100	Cycle-cycle jitter, bridge port transmit reference clock PCKIN_P, PCKIN_N	ps
tPP	2.5		Transmit data bit period. ^a	ns
tPCSO		+/-0.25	Output skew, transmit clock to any transmit strobe.	ns
tPDSO	0.8		Delay, transmit data out to strobe out rising/falling, same lane. ^b	ns
tPSDO			Delay, strobe out rising/falling to transmit data out, same lane.	ns
tPZDO		2*tPP+0.5	Data driven to first data valid, any lane.	ns
tPDZO		2*tPP+0.5	Final data valid to data tristate.	ns
tPCKI	5.0		Period, receive clock in.	ns
tPCSI		+/-1.25	Input skew, receive clock to any receive strobe.	ns
tPSU	0.3		Setup, input data valid to input strobe rising/falling, same lane.	ns
tPH	0.3		Hold, input strobe rising/falling to input data invalid, same lane.	ns

Table 16 Bridge Port timing parameters

a. tPP is defined by the programming of the Bridge Port clock generator PLL, and the input clock frequency on **PCKIN**.

b. At minimum tPP.

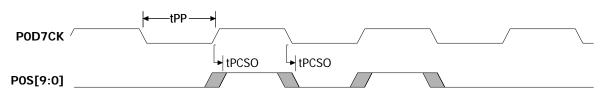
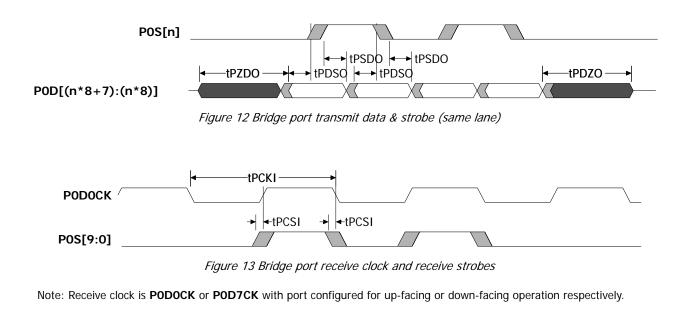



Figure 11 Bridge port transmit clock and transmit strobes

Note: Transmit clock is POD7CK or PODOCK with port configured for up-facing or down-facing operation respectively.

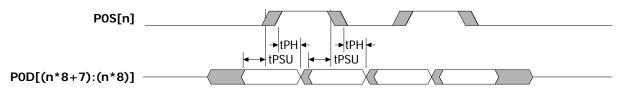
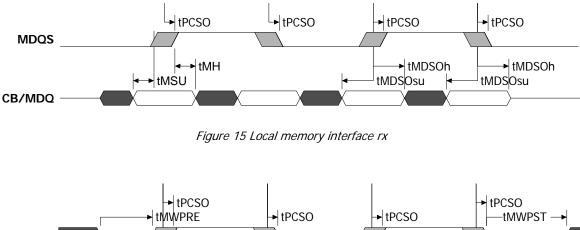


Figure 14 Bridge port receive data & strobe (same lane)


PRELIMINARY TECHNICAL DATA

Local memory interface

Name	Min	Тур	Max	Comment	Units
tMCK		5		Clock output period	ns
tMCSO	-1.25		1.25	Output skew any transmit clock to any data strobe	ns
tMCRR	RL ^a	RL+4.5		Clock out to strobe in	ns
tMDSO	-0.75		0.75	Transmit data to stobe out rising/falling same lane	ns
tMSU	0.4				ns
tMH	0.4				ns
tMDSS					ns
tMWPRE	1.5			Data strobe preamble	ns
tMWPST	2			Data strobe post-amble	ns
tMCAOSU	0.8			Delay from control/address edge to following clock rising edge	ns
tMCAOH	1			Delay from clock rising edge to control/address edge	ns

Table 17 Local memory interface timing parameters

a. RL = read latency

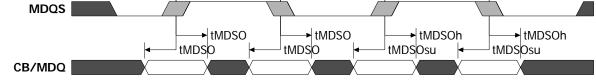


Figure 16 Local memory interface tx

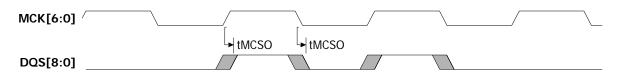


Figure 17 Local memory interface tx clk

PRELIMINARY TECHNICAL DATA

Test access port

The operation of the IEEE1149.1 TAP is independent of the other device interfaces.

Name	Min	Max	Comment	Units
tTRST	100		TRST_N assertion pulse width	ns
tTSDC	5		TMS, TDI setup before TCK rising	ns
tTHCD	0		TMS, TDI hold after TCK rising	ns
tTCCYC	100		TCK period rising to rising	ns
tTCPW	20		TCK high pulse width	ns
tTCO	1	10	TCK falling to TDO valid delay	ns

Table 18 Test access port timing parameters

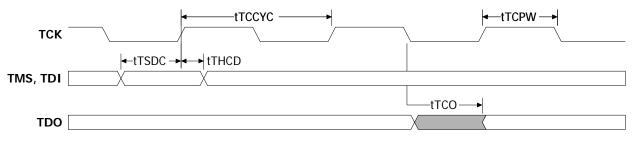


Figure 18 Test access port timing

PRELIMINARY TECHNICAL DATA

Bootstrap sequence

The usual initialization and bootstrap sequence is summarized below.

- 1. Apply power. The supplies should be applied in the following sequence: **VDDIO** \rightarrow **AVDD** \rightarrow **VDD**.
- 2. Assert **RST_N**. This puts the following subsystems into the reset state:
 - All PLLs
 - All control registers
 - Local memory interface
 - Bridge Port logic
 - Bridge Port I/Os
 - Host / Debug Port
 - System services
 - Core logic
 - RST_N must remain asserted until CKIN_P, CKIN_N have a stable clock.
- 3. Set the PLL configuration signals **CNFG[11:0]** to the required state for the primary configuration data.
- 4. De-assert RST_N.
- 5. Set the PLL configuration signals **CNFG[11:0]** to the required state for the secondary configuration data.
- 6. The core clock PLL takes a number of **CLKIN** cycles to stabilize the core clock. The following subsystems are still in the reset state at this point:
 - LMI and Bridge Port PLLs
 - Local memory interface
 - Bridge Port logic
 - Bridge Port I/O
 - Host / Debug Port
- 7. When core clock has stabilized, the output signal **HRXSTP** is de-asserted, indicating to the host logic that the HDP port is ready to accept the bus enumeration and subsequent access to internal device registers.
- 8. Enumerate the device ID via the HDP, by applying ID to HRXD[7:0] and asserting HGNT for one cycle.
- 9. Configure the Bridge Ports control registers via the HDP.
 - a. Configure Bridge Ports
 - b. Configure transmit PLL.
 - c. Wait for at least 100us
 - d. Take Bridge Port I/O out of reset by writing to CCBRIOCTRL register
 - e. Configure receive PLL
 - f. Wait for at least 100us
 - g. Take transmit Bridge Port logic out of reset by writing to $\ensuremath{\textbf{CCBRCTRL}}$ register
 - h. Take receive Bridge Port logic out of reset by writing to CCBRCTRL register
- 10.Configure the LMI.
- 11.Configure the Address Expansion Units in the ClearConnect bus.
- 12. Configure the Interrupt and Semaphore Unit.
- 13.Boot processor core.

This information applies to a product under development. Specifications and characteristics are subject to change without notice.

© Copyright ClearSpeed Technology plc 2008

PRELIMINARY TECHNICAL DATA

Configuration data

Unlike all other device operating modes, which are programmable through internal registers, the PLL that generates the core clock must be configured directly from external pins since it is itself required for access to the configuration registers. Configuration pins **CNFG[11:0]** are used for this purpose. 24 bits of configuration data are applied in two sets: the twelve *primary* bits are sampled by the device on the de-assertion of reset. These define the multiplication ratio of the reference clock to the internal core clock. The ratio does not have to be an integer; low order fractional ratios are also possible. The twelve *secondary* bits must then be applied continuously from a short period after reset. These bits adjust the analog parameters of the PLL, and are set for lowest jitter. Table 19 shows the different fields that make up the configuration patterns.

CNFG bits	11	10	9	8	7	6	5	4	3	2	1	0
Primary	0	FB- SEL	F	RANGEB		F	RANGEA		MULT			
Secondary	0	0	0					TUNE				

Table 19 PLL configuration fields

The meaning of these bit fields is as follows:

MULT: feedback divider RANGEA: output A divider RANGEB: output B divider FBSEL: select output A or B for feedback TUNE: VCO filter setting

For the normal operating case of a 50 MHz input clock and 250 MHz core clock, the required values are:

 Primary:
 000110110101

 Secondary:
 000111011100

PRELIMINARY TECHNICAL DATA

Mechanical data

The CSX600 is available in a 1,011 pin thermally-enhanced Ball Grid Array (BGA) package. Mechanical details are shown in Figure 19.



Figure 19 Mechanical data

PRELIMINARY TECHNICAL DATA

Pin assignment

Table 20 summarizes the function assigned to every pin of the device. Tables 21 to 27 show the pinout organized by function.

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
A3	MDQ12	A4	MDQ8	A5	MCK4_N	A6	MCK1_N	A7	MDQ14	A8	MDQ21	A9	MDQ17
A10	MDQS2	A11	MDQ28	A12	MDQ24	A13	MDSG3	A14	MDQ30	A15	MCK3_N	A16	MCKO_N
A17	NC	A18	MCB0	A19	MDQS8	A20	MCB7	A21	MCB3	A22	MDQ37	A23	MDM4
A24	MDSG4	A25	MDQ39	A26	MDQ35	A27	MDQ41	A28	MDQ46	A29	MDQ43	A30	MCK2_P
A31	MCK5_P	A32	MDSG6	A33	MDM6	B3	MDQ3	B5	MCK4_P	B6	MCK1_P	B8	MDQ20
B9	MDSG2	B11	MDQ29	B12	MDQ25	B14	MDM3	B15	MCK3_P	B16	МСКО_Р	B17	NC
B19	MCB6	B21	MCB2	B22	MDQ32	B24	MDQS4	B25	MDQ34	B27	MDSG5	B28	MDQ47
B30	MCK2_N	B31	MCK5_N	B33	MDQS6	C1	MDQ7	C2	MDQ2	C4	MDQ13	C5	MDSG1
C7	MDQS1	C8	MDQ10	C10	MDM2	C11	MDQ23	C13	MDQS3	C14	MDQ31	C16	MDQ27
C17	MA1	C18	MCB1	C19	MDSG8	C21	MDQ36	C22	MDQ33	C24	MDQ38	C25	MDQ45
C27	MDM5	C28	MDQ42	C30	MDQ53	C31	MDQ49	C32	MDQ50	C33	MDQ55	C34	MDQ54
D1	MDQS0	D3	MDQ6	D5	MDQ9	D6	MDM1	D8	MDQ15	D9	MDQ16	D11	MDQ22
D12	MDQ18	D14	MA8	D15	MDQ19	D17	MA2	D18	MAO	D20	MA10	D21	MRAS_N
D23	MCAS_N	D24	MDQ44	D26	MDQ40	D27	MDQS5	D29	MDQ52	D30	MDQ48	D32	MDQ51
D34	MDQ61	E1	MDQ1	E2	MDSG0	E4	MDQ0	E7	NC	E8	MBA2	E10	MDQ11
E11	MA9	E13	MA7	E14	MA6	E16	MA5	E18	MCB5	E19	MDM8	E21	MODT0
E22	MWE_N	E24	MS2_N	E25	MODT1	E27	MODT2	E28	MODT3	E30	MDQ60	E31	MDQ56
E33	MDQ57	E34	MDSG7	F1	MDQ5	F3	MDM0	F5	MDQ4	F6	MCKE	F8	MA14
F11	MA12	F12	MA11	F15	MDQ26	F16	MA4	F17	MA3	F18	MCB4	F19	MSO_N
F20	MBA1	F21	MBA0	F23	MS1_N	F24	MA13	F26	MS3_N	F28	MDQ58	F29	MDQ63
F30	MDQS7	F32	MDQ62	F33	MDM7	F34	MCK6_P	G1	RST_N	G3	NC	G4	CNFG0
G10	MVREF0	G11	MVREF1	G13	MVREF2	G14	MVREF3	G16	MVREF9	G17	MVREF8	G21	MVREF4
G22	MVREF5	G24	MVREF6	G25	MVREF7	G32	MDQ59	G34	MCK6_N	H2	NC	H4	CNFG1
H5	CNFG7	H7	NC	H29	HTXEOP	H30	HTXSTP	H31	HTXD6	H33	HTXD1	H34	HTXD0
J1	CKIN_P	J3	NC	J4	CNFG2	J5	CNFG8	J6	NC	J7	NC	J28	HCLK
J30	HGNT	J32	HTXD5	J34	HTXD2	K1	CKIN_N	K3	NC	K4	CNFG3	K5	CNFG9
K7	THDP	K18		K29	HTXVAL	K30	HREQ	K31	HTXD7	K33	HTXD4	K34	HTXD3
L4	CNFG4	L5	CNFG10	L6	NC	L7	THDN	L18	NC	L29	HRXEOP	L30	HRXSTP
L31	HRXD6	L33	HRXD1	L34	HRXD0	M1	тск	M2	TDI	M3	TRST_N	M4	CNFG5
	CNFG11	M28	HVREF	M30	HERR	M31	HRXVAL	M32	HRXD5	M33	HRXD3	M34	HRXD2
	TMS	N2	TDO	N4	CNFG6	N5	PUP	N6	NC	N7	NC	N29	HIRQ_N
-	HRXD7	N33	HRXD4	P1	P0D8	P3	P0D9	P5	P0D10	P7	VSS	P28	P1VREF1
	P1D10	P32	P1D9	P34	P1D8	R2	P0D11	R4	P0S1	R6	P0D12	R10	AVDD1
R11	AVSS1	R29	P1D12	R31	P1S1	R33	P1D11	T1	P0D13	Т3	P0D14	T5	P0D15
	POVREF1	T10	AVDD2	T11	AVSS2	T30	P1D15	T32	P1D14	T34	P1D13	U2	P0D16
U4	P0D17	U6	P0D18	U29	P1D18	U31	P1D17	U33	P1D16	V1	P0D19	V3	P0S2
V5	P0D20		P1VREF2	V30	P1D20	V32	P1S2	V34	P1D19	W2	P0D21	W4	P0D22
W6	P0D23	W7	POVREF2		P1D23		P1D22	W33	P1D21	Y1	P0D24		P0D25
Y5	P0D26	Y28	P1VREF3	Y30	P1D26	Y32	P1D25	Y34	P1D24		P0D27	AA4	P0S3
	P0D28	AA29	P1D28	AA31	P1S3	AA33	P1D27	AB1	P0D29	AB3	P0D30	AB5	P0D31
AB7	POVREF3	AB30	P1D31	AB32	P1D30	AB34	P1D29	AC2	P0D32	AC4	P0D33	AC6	P0D34
AC29	P1D34	AC31	P1D33	AC33	P1D32	AD1	P0D35	AD3	P0S4	AD5	P0D36	AD13	AVSS3

Table 20 Pin assignment

Pin	Signal												
AD17	AVSS4	AD18	VSS	AD22	AVSS6	AD28	P1VREF4	AD30	P1D36	AD32	P1S4	AD34	P1D35
AE2	P0D37	AE4	P0D38	AE6	P0D39	AE7	POVREF4	AE13	AVDD3	AE17	AVDD4	AE18	VSS
AE22	AVDD6	AE29	P1D39	AE31	P1D38	AE33	P1D37	AF1	P0D40	AF3	P0D41	AF5	P0D42
AF28	P1VREF5	AF30	P1D42	AF32	P1D41	AF34	P1D40	AG2	P0D43	AG4	P0S5	AG6	P0D44
AG7	POVREF5	AG29	P1D44	AG31	P1S5	AG33	P1D43	AH1	P0D45	AH3	P0D46	AH5	P0D47
AH9	POVREF7	AH11	POVREF6	AH12	P0VREF0	AH14	POVREF8	AH15	POVREF9	AH20	P1VREF9	AH21	P1VREF8
AH23	P1VREF0	AH24	P1VREF6	AH26	P1VREF7	AH30	P1D47	AH32	P1D46	AH34	P1D45	AJ2	P0D58
AJ4	P0D63	AJ6	P0D52	AJ8	P0D2	AJ10	P0D7CK	AJ12	P0D68	AJ14	P0D74	AJ16	P0D79
AJ19	P1D79	AJ21	P1D74	AJ23	P1D68	AJ25	P1D7CK	AJ27	P1D2	AJ29	P1D52	AJ31	P1D63
AJ33	P1D58	AK3	P0D60	AK5	P0D50	AK7	P0D55	AK9	P0D4	AK11	P0D66	AK13	P0D71
AK15	P0D76	AK20	P1D76	AK22	P1D71	AK24	P1D66	AK26	P1D4	AK28	P1D55	AK30	P1D50
AK32	P1D60	AL2	P0D57	AL4	P0D62	AL6	P0S6	AL8	P0D1	AL10	P0D6	AL12	P0S8
AL14	P0D73	AL16	P0D78	AL19	P1D78	AL21	P1D73	AL23	P1S8	AL25	P1D6	AL27	P1D1
AL29	P1S6	AL31	P1D62	AL33	P1D57	AM3	P0S7	AM5	P0D49	AM7	P0D54	AM9	P0S0
AM11	P0D65	AM13	P0D70	AM15	P0S9	AM17	NC	AM18	NC	AM20	P1S9	AM22	P1D70
AM24	P1D65	AM26	P1S0	AM28	P1D54	AM30	P1D49	AM32	P1S7	AN2	P0D56	AN4	P0D61
AN6	P0D51	AN8	PODOCK	AN10	P0D5	AN12	P0D67	AN14	P0D72	AN16	P0D77	AN19	P1D77
AN21	P1D72	AN23	P1D67	AN25	P1D5	AN27	P1D0CK	AN29	P1D51	AN31	P1D61	AN33	P1D56
AP3	P0D59	AP5	P0D48	AP7	P0D53	AP9	P0D3	AP11	P0D64	AP13	P0D69	AP15	P0D75
AP17	PCKIN_P	AP18	PCKIN_N	AP20	P1D75	AP22	P1D69	AP24	P1D64	AP26	P1D3	AP28	P1D53
AP30	P1D48	AP32	P1D59										

Table 20 Pin assignment

Signal	Pin	Dir	Туре	Signal	Pin	Dir	Туре
PCKIN_N	AP18	Ι	SSTL	PCKIN_P	AP17	Ι	SSTL

Table 21 Common bridge port signals

Signal	Pin	Dir	Туре	Signal	Pin	Dir	Туре	Signal	Pin	Dir	Туре
AVDD3	AE13	_	ANALOG	AVDD4	AE17	_	ANALOG	AVSS3	AD13	-	ANALOG
AVSS4	AD17	I	ANALOG	PODOCK	AN8	10	SSTL	P0D1	AL8	10	SSTL
P0D10	P5	10	SSTL	P0D11	R2	10	SSTL	P0D12	R6	10	SSTL
P0D13	T1	10	SSTL	P0D14	T3	10	SSTL	P0D15	T5	10	SSTL
P0D16	U2	10	SSTL	P0D17	U4	10	SSTL	P0D18	U6	10	SSTL
P0D19	V1	10	SSTL	P0D2	AJ8	10	SSTL	P0D20	V5	10	SSTL
P0D21	W2	10	SSTL	P0D22	W4	10	SSTL	P0D23	W6	10	SSTL
P0D24	Y1	10	SSTL	P0D25	Y3	10	SSTL	P0D26	Y5	10	SSTL
P0D27	AA2	10	SSTL	P0D28	AA6	10	SSTL	P0D29	AB1	10	SSTL
P0D3	AP9	10	SSTL	P0D30	AB3	10	SSTL	P0D31	AB5	10	SSTL
P0D32	AC2	10	SSTL	P0D33	AC4	10	SSTL	P0D34	AC6	10	SSTL
P0D35	AD1	10	SSTL	P0D36	AD5	10	SSTL	P0D37	AE2	10	SSTL
P0D38	AE4	10	SSTL	P0D39	AE6	10	SSTL	P0D4	AK9	10	SSTL
P0D40	AF1	10	SSTL	P0D41	AF3	10	SSTL	P0D42	AF5	10	SSTL
P0D43	AG2	10	SSTL	P0D44	AG6	10	SSTL	P0D45	AH1	10	SSTL
P0D46	AH3	10	SSTL	P0D47	AH5	10	SSTL	P0D48	AP5	10	SSTL
P0D49	AM5	10	SSTL	P0D5	AN10	10	SSTL	P0D50	AK5	10	SSTL

Table 22 Bridge port 0 signals

Signal	Pin	Dir	Туре	Signal	Pin	Dir	Туре	Signal	Pin	Dir	Туре
P0D51	AN6	10	SSTL	P0D52	AJ6	10	SSTL	P0D53	AP7	10	SSTL
P0D54	AM7	10	SSTL	P0D55	AK7	10	SSTL	P0D56	AN2	10	SSTL
P0D57	AL2	10	SSTL	P0D58	AJ2	10	SSTL	P0D59	AP3	10	SSTL
P0D6	AL10	10	SSTL	P0D60	AK3	10	SSTL	P0D61	AN4	10	SSTL
P0D62	AL4	10	SSTL	P0D63	AJ4	10	SSTL	P0D64	AP11	10	SSTL
P0D65	AM11	10	SSTL	P0D66	AK11	10	SSTL	P0D67	AN12	10	SSTL
P0D68	AJ12	10	SSTL	P0D69	AP13	10	SSTL	P0D70	AM13	10	SSTL
P0D71	AK13	10	SSTL	P0D72	AN14	10	SSTL	P0D73	AL14	10	SSTL
P0D74	AJ14	10	SSTL	P0D75	AP15	10	SSTL	P0D76	AK15	10	SSTL
P0D77	AN16	10	SSTL	P0D78	AL16	10	SSTL	P0D79	AJ16	10	SSTL
P0D7CK	AJ10	10	SSTL	P0D8	P1	10	SSTL	P0D9	P3	10	SSTL
P0S0	AM9	10	SSTL	P0S1	R4	10	SSTL	P0S2	V3	10	SSTL
P0S3	AA4	10	SSTL	P0S4	AD3	10	SSTL	P0S5	AG4	10	SSTL
P0S6	AL6	10	SSTL	P0S7	AM3	10	SSTL	P0S8	AL12	10	SSTL
P0S9	AM15	10	SSTL	P0VREF0	AH12	Ι	ANALOG	POVREF1	T7	I	ANALOG
POVREF2	W7	I	ANALOG	POVREF3	AB7	I	ANALOG	POVREF4	AE7	I	ANALOG
POVREF5	AG7	I	ANALOG	POVREF6	AH11	I	ANALOG	POVREF7	AH9	I	ANALOG
POVREF8	AH14	I	ANALOG	POVREF9	AH15	I	ANALOG				

Table 22 Bridge port 0 signals

Signal	Pin	Dir	Туре	Signal	Pin	Dir	Туре	Signal	Pin	Dir	Туре
AVDD6	AE22	_	ANALOG	AVSS6	AD22		ANALOG	P1D0CK	AN27	10	SSTL
P1D1	AL27	10	SSTL	P1D10	P30	10	SSTL	P1D11	R33	10	SSTL
P1D12	R29	10	SSTL	P1D13	T34	10	SSTL	P1D14	T32	10	SSTL
P1D15	T30	10	SSTL	P1D16	U33	10	SSTL	P1D17	U31	10	SSTL
P1D18	U29	10	SSTL	P1D19	V34	10	SSTL	P1D2	AJ27	10	SSTL
P1D20	V30	10	SSTL	P1D21	W33	10	SSTL	P1D22	W31	10	SSTL
P1D23	W29	10	SSTL	P1D24	Y34	10	SSTL	P1D25	Y32	10	SSTL
P1D26	Y30	10	SSTL	P1D27	AA33	10	SSTL	P1D28	AA29	10	SSTL
P1D29	AB34	10	SSTL	P1D3	AP26	10	SSTL	P1D30	AB32	10	SSTL
P1D31	AB30	10	SSTL	P1D32	AC33	10	SSTL	P1D33	AC31	10	SSTL
P1D34	AC29	10	SSTL	P1D35	AD34	10	SSTL	P1D36	AD30	10	SSTL
P1D37	AE33	10	SSTL	P1D38	AE31	10	SSTL	P1D39	AE29	10	SSTL
P1D4	AK26	10	SSTL	P1D40	AF34	10	SSTL	P1D41	AF32	10	SSTL
P1D42	AF30	10	SSTL	P1D43	AG33	10	SSTL	P1D44	AG29	10	SSTL
P1D45	AH34	10	SSTL	P1D46	AH32	10	SSTL	P1D47	AH30	10	SSTL
P1D48	AP30	10	SSTL	P1D49	AM30	10	SSTL	P1D5	AN25	10	SSTL
P1D50	AK30	10	SSTL	P1D51	AN29	10	SSTL	P1D52	AJ29	10	SSTL
P1D53	AP28	10	SSTL	P1D54	AM28	10	SSTL	P1D55	AK28	10	SSTL
P1D56	AN33	10	SSTL	P1D57	AL33	10	SSTL	P1D58	AJ33	10	SSTL
P1D59	AP32	10	SSTL	P1D6	AL25	10	SSTL	P1D60	AK32	10	SSTL
P1D61	AN31	10	SSTL	P1D62	AL31	10	SSTL	P1D63	AJ31	10	SSTL
P1D64	AP24	10	SSTL	P1D65	AM24	10	SSTL	P1D66	AK24	10	SSTL
P1D67	AN23	10	SSTL	P1D68	AJ23	10	SSTL	P1D69	AP22	10	SSTL
P1D70	AM22	10	SSTL	P1D71	AK22	10	SSTL	P1D72	AN21	10	SSTL
P1D73	AL21	10	SSTL	P1D74	AJ21	10	SSTL	P1D75	AP20	10	SSTL

Table 23 Bridge port 1 signals

Signal	Pin	Dir	Туре	Signal	Pin	Dir	Туре	Signal	Pin	Dir	Туре
P1D76	AK20	10	SSTL	P1D77	AN19	10	SSTL	P1D78	AL19	10	SSTL
P1D79	AJ19	10	SSTL	P1D7CK	AJ25	10	SSTL	P1D8	P34	10	SSTL
P1D9	P32	10	SSTL	P1S0	AM26	10	SSTL	P1S1	R31	10	SSTL
P1S2	V32	10	SSTL	P1S3	AA31	10	SSTL	P1S4	AD32	10	SSTL
P1S5	AG31	10	SSTL	P1S6	AL29	10	SSTL	P1S7	AM32	10	SSTL
P1S8	AL23	10	SSTL	P1S9	AM20	10	SSTL	P1VREF0	AH23	I	ANALOG
P1VREF1	P28		ANALOG	P1VREF2	V28		ANALOG	P1VREF3	Y28	I	ANALOG
P1VREF4	AD28	I	ANALOG	P1VREF5	AF28	I	ANALOG	P1VREF6	AH24	I	ANALOG
P1VREF7	AH26	I	ANALOG	P1VREF8	AH21	I	ANALOG	P1VREF9	AH20	I	ANALOG

Table 23 Bridge port 1 signals

Signal	Pin	Dir	Туре	Signal	Pin	Dir	Туре
HCLK	J28	I	HSTL	HERR	M30	OD	HSTL
HGNT	J30		HSTL	HIRQ_N	N29	OD	HSTL
HREQ	K30	0	HSTL	HRXD0	L34	-	HSTL
HRXD1	L33		HSTL	HRXD2	M34	-	HSTL
HRXD3	M33		HSTL	HRXD4	N33	-	HSTL
HRXD5	M32		HSTL	HRXD6	L31	-	HSTL
HRXD7	N31		HSTL	HRXEOP	L29	-	HSTL
HRXSTP	L30	OD	HSTL	HRXVAL	M31	-	HSTL
HTXD0	H34	OT	HSTL	HTXD1	H33	OT	HSTL
HTXD2	J34	OT	HSTL	HTXD3	K34	OT	HSTL
HTXD4	K33	OT	HSTL	HTXD5	J32	OT	HSTL
HTXD6	H31	OT	HSTL	HTXD7	K31	OT	HSTL
HTXEOP	H29	OT	HSTL	HTXSTP	H30	I	HSTL
HTXVAL	K29	10	HSTL	HVREF	M28	-	ANALOG

Table 24 Host debug port signals

Signal	Pin	Dir	Туре	Signal	Pin	Dir	Туре	Signal	Pin	Dir	Туре
MAO	D18	0	SSTL	MA1	C17	0	SSTL	MA10	D20	0	SSTL
MA11	F12	0	SSTL	MA12	F11	0	SSTL	MA13	F24	0	SSTL
MA14	F8	0	SSTL	MA2	D17	0	SSTL	MA3	F17	0	SSTL
MA4	F16	0	SSTL	MA5	E16	0	SSTL	MA6	E14	0	SSTL
MA7	E13	0	SSTL	MA8	D14	0	SSTL	MA9	E11	0	SSTL
MBA0	F21	0	SSTL	MBA1	F20	0	SSTL	MBA2	E8	0	SSTL
MCAS_N	D23	0	SSTL	MCB0	A18	10	SSTL	MCB1	C18	10	SSTL
MCB2	B21	10	SSTL	MCB3	A21	10	SSTL	MCB4	F18	10	SSTL
MCB5	E18	10	SSTL	MCB6	B19	10	SSTL	MCB7	A20	10	SSTL
MCK0_N	A16	0	SSTL	МСКО_Р	B16	0	SSTL	MCK1_N	A6	0	SSTL
MCK1_P	B6	0	SSTL	MCK2_N	B30	0	SSTL	MCK2_P	A30	0	SSTL
MCK3_N	A15	0	SSTL	MCK3_P	B15	0	SSTL	MCK4_N	A5	0	SSTL
MCK4_P	B5	0	SSTL	MCK5_N	B31	0	SSTL	MCK5_P	A31	0	SSTL
MCK6_N	G34	0	SSTL	MCK6_P	F34	0	SSTL	MCKE	F6	0	SSTL
MDM0	F3	0	SSTL	MDM1	D6	0	SSTL	MDM2	C10	0	SSTL
MDM3	B14	0	SSTL	MDM4	A23	0	SSTL	MDM5	C27	0	SSTL

Table 25 Local memory interface signals

Signal	Pin	Dir	Туре	Signal	Pin	Dir	Туре	Signal	Pin	Dir	Туре
MDM6	A33	0	SSTL	MDM7	F33	0	SSTL	MDM8	E19	0	SSTL
MDQ0	E4	10	SSTL	MDQ1	E1	10	SSTL	MDQ10	C8	10	SSTL
MDQ11	E10	10	SSTL	MDQ12	A3	10	SSTL	MDQ13	C4	10	SSTL
MDQ14	A7	10	SSTL	MDQ15	D8	10	SSTL	MDQ16	D9	10	SSTL
MDQ17	A9	10	SSTL	MDQ18	D12	10	SSTL	MDQ19	D15	10	SSTL
MDQ2	C2	10	SSTL	MDQ20	B8	10	SSTL	MDQ21	A8	10	SSTL
MDQ22	D11	10	SSTL	MDQ23	C11	10	SSTL	MDQ24	A12	10	SSTL
MDQ25	B12	10	SSTL	MDQ26	F15	10	SSTL	MDQ27	C16	10	SSTL
MDQ28	A11	10	SSTL	MDQ29	B11	10	SSTL	MDQ3	B3	10	SSTL
MDQ30	A14	10	SSTL	MDQ31	C14	10	SSTL	MDQ32	B22	10	SSTL
MDQ33	C22	10	SSTL	MDQ34	B25	10	SSTL	MDQ35	A26	10	SSTL
MDQ36	C21	10	SSTL	MDQ37	A22	10	SSTL	MDQ38	C24	10	SSTL
MDQ39	A25	10	SSTL	MDQ4	F5	10	SSTL	MDQ40	D26	10	SSTL
MDQ41	A27	10	SSTL	MDQ42	C28	10	SSTL	MDQ43	A29	10	SSTL
MDQ44	D24	10	SSTL	MDQ45	C25	10	SSTL	MDQ46	A28	10	SSTL
MDQ47	B28	10	SSTL	MDQ48	D30	10	SSTL	MDQ49	C31	10	SSTL
MDQ5	F1	10	SSTL	MDQ50	C32	10	SSTL	MDQ51	D32	10	SSTL
MDQ52	D29	10	SSTL	MDQ53	C30	10	SSTL	MDQ54	C34	10	SSTL
MDQ55	C33	10	SSTL	MDQ56	E31	10	SSTL	MDQ57	E33	10	SSTL
MDQ58	F28	10	SSTL	MDQ59	G32	10	SSTL	MDQ6	D3	10	SSTL
MDQ60	E30	10	SSTL	MDQ61	D34	10	SSTL	MDQ62	F32	10	SSTL
MDQ63	F29	10	SSTL	MDQ7	C1	10	SSTL	MDQ8	A4	10	SSTL
MDQ9	D5	10	SSTL	MDQS0	D1	10	SSTL	MDQS1	C7	10	SSTL
MDQS2	A10	10	SSTL	MDQS3	C13	10	SSTL	MDQS4	B24	10	SSTL
MDQS5	D27	10	SSTL	MDQS6	B33	10	SSTL	MDQS7	F30	10	SSTL
MDQS8	A19	10	SSTL	MDSG0	E2	10	SSTL	MDSG1	C5	10	SSTL
MDSG2	B9	10	SSTL	MDSG3	A13	10	SSTL	MDSG4	A24	10	SSTL
MDSG5	B27	10	SSTL	MDSG6	A32	10	SSTL	MDSG7	E34	10	SSTL
MDSG8	C19	10	SSTL	MODTO	E21	0	SSTL	MODT1	E25	0	SSTL
MODT2	E27	0	SSTL	MODT3	E28	0	SSTL	MRAS_N	D21	0	SSTL
MS0_N	F19	0	SSTL	MS1_N	F23	0	SSTL	MS2_N	E24	0	SSTL
MS3_N	F26	0	SSTL	MVREF0	G10	I	ANALOG	MVREF1	G11	I	ANALOG
MVREF2	G13	I	ANALOG	MVREF3	G14	-	ANALOG	MVREF4	G21	I	ANALOG
MVREF5	G22	I	ANALOG	MVREF6	G24	-	ANALOG	MVREF7	G25	I	ANALOG
MVREF8	G17	Ι	ANALOG	MVREF9	G16	-	ANALOG	MWE_N	E22	0	SSTL

Table 25 Local memory interface signals

Signal	Pin	Dir	Туре	Signal	Pin	Dir	Туре
AVDD1	R10	_	ANALOG	AVDD2	T10	I	ANALOG
AVSS1	R11	-	ANALOG	AVSS2	T11	I	ANALOG
CKIN_N	K1	-	SSTL	CKIN_P	J1	I	SSTL
CNFG0	G4	-	LVCMOS	CNFG1	H4	I	LVCMOS
CNFG10	L5	I	LVCMOS	CNFG11	M5	I	LVCMOS
CNFG2	J4	I	LVCMOS	CNFG3	K4	I	LVCMOS

Table 26 System services signals

Signal	Pin	Dir	Туре	Signal	Pin	Dir	Туре
CNFG4	L4	-	LVCMOS	CNFG5	M4	-	LVCMOS
CNFG6	N4	-	LVCMOS	CNFG7	H5	I	LVCMOS
CNFG8	J5	-	LVCMOS	CNFG9	K5	I	LVCMOS
RST_N	G1	-	LVCMOS	THDN	L7	10	ANALOG
THDP	K7	10	ANALOG				

Table 26 System services signals

Signal	Pin	Dir	Туре	Signal	Pin	Dir	Туре
тск	M1	-	LVCMOS	TDI	M2	-	LVCMOS
TDO	N2	0	LVCMOS	TMS	N1	-	LVCMOS
TRST_N	M3	I	LVCMOS				

Table 27 Test signals

To assist with planning board layout, Figure 20 shows the approximate location of functional groups of pins and the position of the power and clock pins.

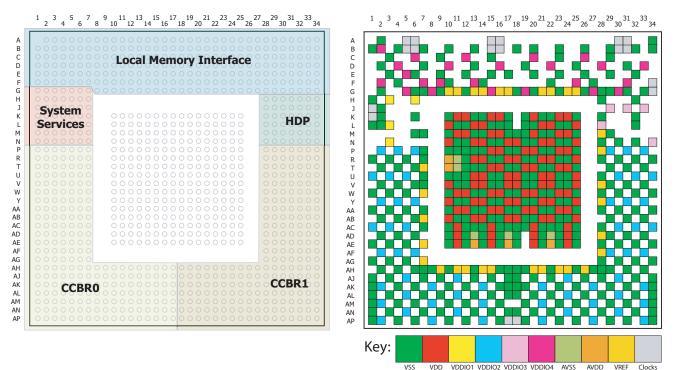


Figure 20 Signal location guide: functions and power (PCB view)


PRELIMINARY TECHNICAL DATA

Ordering information

The available products are shown in the table below. These are the products planned for volume production. Contact your ClearSpeed representative to confirm availability of specific products and to check on new releases.

ClearSpeed order code	Device marking	Description
	CSX600-C0CB-ES	Engineering samples. Uncharacterized.
		Engineering samples. Uncharacterized.

The device marking is made up of the following elements.

Contact information

ClearSpeed Technology, Inc. 3031 Tisch Way, Suite 200 San Jose, CA 95128 USA

ClearSpeed Technology plc 3110 Great Western Court Hunts Ground Road Bristol BS34 8HP United Kingdom

 Tel:
 408-557-2067

 Fax:
 408-557-9054

 Email:
 info@clearspeed.com

 Web:
 www.clearspeed.com

 Tel:
 +44 (0)117 317 2000

 Fax:
 +44 (0)117 317 2002

 Email:
 info@clearspeed.com

 Web:
 www.clearspeed.com

PRELIMINARY TECHNICAL DATA

Disclaimers

- 1. Information and data contained in this data sheet is provisional and liable to change.
- Such Information does not constitute an offer of, or an invitation by or on behalf of ClearSpeed, or any ClearSpeed affiliate to supply any
 product or provide any service to any party having access to this Information. Except as provided in ClearSpeed Terms and Conditions of
 Sale for ClearSpeed products, ClearSpeed assumes no liability whatsoever.
- 3. ClearSpeed products are not intended for use, whether directly or indirectly, in any medical, life saving and/ or life sustaining systems or applications.
- 4. The worldwide intellectual property rights in the Information and data contained therein is owned by ClearSpeed. No license whether express or implied either by estoppel or otherwise to any intellectual property rights is granted by this document or otherwise. You may not download, copy, adapt or distribute this Information except with the consent in writing of ClearSpeed.
- 5. The system vendor remains solely responsible for any and all design, functionality and terms of sale of any product which incorporates a ClearSpeed product including without limitation, product liability, intellectual property infringement, warranty including conformance to specification and or performance.
- 6. Any condition, warranty or other term which might but for this paragraph have effect between ClearSpeed and you or which would otherwise be implied into or incorporated into the Information (including without limitation, the implied terms of satisfactory quality, merchantability or fitness for purpose), whether by statute, common law or otherwise are hereby excluded.
- 7. ClearSpeed reserves the right to make changes to the Information or the data contained therein at any time without notice.

© Copyright ClearSpeed Technology plc 2006. All rights reserved.

Advance, ClearSpeed, ClearConnect and the ClearSpeed logo are trade marks or registered trade marks of ClearSpeed Technology plc. All other brands and names are the property of their respective owners.

This product is protected by the following UK patents: 2341770, 2348980, 2348984, 2348974, 2348973, 2348971, 2391093, 2394815, 2390506 or international equivalents. Other patents pending.