
CSX PROCESSOR ARCHITECTURE

www.clearspeed.com

Abstract
This paper describes the architecture of the
CSX family of processors based on
ClearSpeed’s multi-threaded array processor;
a high performance, power-efficient, scalable,
data-parallel processor.

The CSX processors have a simple
programming model and are supported by
a suite of software development tools,
built around a C compiler, graphical
debugger and visual profiling tools.
High performance standard math libraries
are also available.

Developed for applications with demand-
ing performance requirements, the
processor can be used as an application
accelerator for high performance
computing (HPC) and also as an
embedded processor for Digital Signal
Processing (DSP).

The use of the add-in CSX600-based
AdvanceTM Board as an application
coprocessor is also described. This PCI
form factor board provides over 50
GFLOPS DGEMM sustained performance
while typically consuming only 25 watts.

CLEARSPEED WHITEPAPER:
CSX PROCESSOR ARCHITECTURE

Introduction
This whitepaper describes ClearSpeed’s
CSX family of coprocessors which are
based around a multi-threaded array
processor (MTAP) core. This processing
architecture has been developed to
address a number of problems in high
performance, high data rate processing.

CSX processors can be used as application
accelerators, alongside a standard processor
such as those from Intel or AMD.

The architecture can be utilized with any
application with significant data parallelism:

nn Fine Grained e.g. vector operations
nn Medium Grained e.g. unrolled

independent loops
nn Coarse Grained e.g. multiple

simultaneous data channels

The CSX600-based ClearSpeed Advance
board is used as an application accelerator
for high performance computing (HPC). It
works with standard processors (from Intel
or AMD) to share the compute intensive
parts of an application. By accelerating
standard software libraries used by a number
of applications, the ClearSpeed Advance
board allows these applications to be
accelerated “out of the box.”

2

FIGURE 2: PROCESSOR EVOLUTION

FIGURE 1: CLEARSPEED ADVANCE BOARD

The ClearSpeed Advance accelerator
board can be used to accelerate a single
workstation, server or an entire cluster;
multiple boards may be used in one
computer.

CSX Family
The CSX processors are designed as
application accelerators and embedded
processors. They provide a complete
System on Chip (SoC) solution: integrating
an MTAP processor with all the necessary
interfaces and support logic.

The first product in the CSX family is
the CSX600. This is optimized for high
performance, floating point intensive
applications. It includes an MTAP processor,
DDR2 DRAM interface, on-chip SRAM and
high speed inter-processor I/O ports.

MTAP Architecture
The MTAP architecture defines a family of
embedded processors with parallel data
processing capability. Figure 1 compares a
standard processor and the multi-threaded
array processor. As can be seen, the MTAP
processor has a standard, RISC-like,
control unit with instruction fetch, caches
and I/O mechanisms. This is coupled to a
highly parallel execution unit which
provides the performance and scalability
of the architecture.

To simplify the integration of the processor
into a variety of systems, the processor
can be configured at boot time to be big or
little-endian.

Control Unit
The control unit fetches, decodes and
dispatches instructions to the execution
units. The processor executes a fairly
standard, three operand instruction set.

The control unit also provides hardware
support for multi-threaded execution,
allowing fast swapping between multiple
threads. The threads are prioritized and
are intended primarily to support efficient
overlap of I/O and compute. This can be
used to hide the latency of external
data accesses.

The processor also includes instruction
and data caches to minimize the latency of
external memory accesses.

The control unit also includes a control
port which is used for initializing and
debugging the processor; it supports
breakpoints, single stepping and the
examination of internal state.

Execution Units
The execution unit uses a number of poly
execution (PE) cores. This allows it to
process data elements in parallel. Each PE
core consists of at least one ALU, registers,
memory and I/O. The CSX600 also
includes an integer MAC and a dual floating
point unit (FPU) on every PE core.

The execution unit can be thought of
as two, largely independent, parts
(see Figure 4)

One part forms the mono execution unit;
this is dedicated to processing mono
(i.e. scalar or non-parallel) data. The mono
execution unit also handles program flow
control such as branching and thread
switching. The rest of the PE cores form
the poly execution unit which processes
parallel (poly) data.

The poly execution unit may consist of
tens, hundreds or even thousands of PE
cores. This array of PE cores operates in a
synchronous manner, similar to a Single
Instruction, Multiple Data (SIMD) processor,
where every PE core executes the same
instruction on its piece of data. Each PE
core also has its own independent local
memory; this provides fast access to the
data being processed. For example, one
PE core at 250 MHz has a memory band-
width of 1 Gbytes/s. An array with 96 such
PE cores has an aggregate bandwidth of
approximately 100 Gbytes/s with single
cycle latency.

3

CSX PROCESSOR ARCHITECTURE

FIGURE 4: POLY EXECUTION UNIT

FIGURE 3: CLEARSPEED CSX600 COPROCESSOR

ON THE ADVANCE BOARD

Programming Model
The control unit fetches, decodes and
dispatches instructions to the execution
units. The processor executes a fairly
standard, three operand instruction set.

FIGURE 5: INSTRUCTION EXECUTION

From a programmer’s perspective, the
processor appears as a single processor
running a single C program. This is very
different from some other parallel processing
models where the programmer has to
explicitly program multiple independent
processor cores, or can only access the
processor via function calls or some other
indirect mechanism.

The processor executes a single instruction
stream; each instruction is sent to one of
the functional units: this may be in the
mono or poly execution unit, or one of
the I/O controllers. The processor can
dispatch an instruction on every cycle.

For multi-cycle instructions, the operation
of the functional units can be overlapped.
So, for example, an I/O operation can be
started with one instruction and on the next
cycle the mono execution unit could start a
multiply instruction (which requires several
cycles to complete). While these operations
are proceeding, the poly execution unit
can continue to execute instructions.

The main change from programming
a standard processor is the concept of
operating on parallel data. Data to be
processed is assigned to variables which
have an instance on every PE core and are
operated on in parallel: we call this poly
data. This can be thought of as a data vector
which is distributed across the PE core array.

Variables which only need to have a single
instance (e.g. loop control variables) are
known as mono variables, they behave
exactly like normal variables on a
sequential processor.

ClearSpeed provides a compiler which
uses a simple extension to standard C to
identify data which is to be processed in
parallel. The new keyword poly is used in a
declaration to define data which exists, and
is processed, independently on every PE
core in the poly execution unit.

Example

To give a feel for the way the processor is
programmed, we use a simple example of
evaluating the sine function.

#include <stdio.h>
#include <math.h>

#define PI 3.1415926535897932384f
#define SAMPLES 96

int main() {
double sine, angle;
int i;

for (i = 0; i < SAMPLES; i++) {
// convert to an angle in

range 0 to Pi
angle = i * PI / SAMPLES;
// calculate sine of angle
sine = sin(angle);
}

}

FIGURE 6: STANDARD C

4

#include <lib_ext.h>

#define PI 3.1415926535897932384f
#define SAMPLES 96

int main() {
poly double sine, angle;
poly int i;

// get PE number: 0...n-1
i = get_penum();
// convert to an angle in range 0

to Pi
angle = i * PI / SAMPLES;
// calculate all sine values

simultaneously
sine = sinp(angle);

}

FIGURE 7: PARALLEL C

Figure 6 shows a loop in standard C which
iterates to calculate a number of values of
the sine function.

Figure 7 shows an equivalent piece of
code which simultaneously calculates 96
different values of the sine function across
the PE core array.

This code uses the library function
get_penum() to get a unique value in the
variable pe on each PE core. This is scaled
to give a range of values for angle
between 0 and pi across the PE cores.

Finally, the library function sinp() is called
to calculate the sine of these values on all
PE cores simultaneously. The sinp
function is the poly equivalent of the
standard sine function; it takes a poly
argument and returns the appropriate
value on every PE core.

The result of running this program on a
96-PE core processor is shown graphically
in Figure 8.

5

CSX PROCESSOR ARCHITECTURE

FIGURE 8: RESULTS FROM EXAMPLE PROGRAM

Interfaces
The processor has a number of interfaces
to the ClearConnect NoC. There are three
categories of interface:

Mono data & instructions: This interface is
used for mono loads and stores, and for
instruction fetching.

Poly data: There are one or more interfaces
for I/O and data. The number of physical
interfaces corresponds to the number of
I/O channels implemented.

Control: The control interface is used for
initialization and debug, and to allow the
processor to generate interrupts on the
host system.

Instruction set
The processor has a fairly standard RISC-
like instruction set. Most instructions can
operate on mono or poly operands and are
executed by the appropriate execution
unit. Some instructions are only relevant to
either the mono or poly execution unit, for
example all program flow control is
handled by the mono unit.

The instruction set provides a standard
set of functions on both mono and poly
execution units:

nn Integer and floating point adds,
subtracts, multiplies, divides

nn Logical operations: and, or, not,
exclusive-or, etc.

nn Arithmetic and logical shifts
nn Data comparisons: equal, not equal,

greater than, less than, etc.
nn Data movement between registers
nn Loads and stores between registers

and memory

To give a feel for the nature of assembly
code for the processor, a few lines of code
are shown below. This simple example
loads a value from memory into a mono
register, gets the PE core number into a
register on each PE core and then adds
these two values together producing a
different result on every PE core.

ld 0:m4, 0x3000 // load mono reg
0 from mem

penum 8:p4 // PE core number into
poly reg 8

add 4:p4, 0:m4, 8:p4 // add;
result in reg 4

6

I Cache Peripheral Network
Control/
Debug

Semaphore Unit

Poly Execution Unit

PIO Collection/Distribution

Thread Control

Mono
Exec Unit

Poly Scoreboard

Poly
MCoded
Control

Poly LS
Control

Poly PIO
Control

System Network

System Network

D Cache

PIO

SRAM

Reg File

FP
-M

U
L

FP
-A

D
D

D
IV

/S
Q

R
T

A
LU

M
A

C

PIO

SRAM

Reg File

FP
-M

U
L

FP
-A

D
D

D
IV

/S
Q

R
T

A
LU

M
A

C

PIO

SRAM

Reg File

FP
-M

U
L

FP
-A

D
D

D
IV

/S
Q

R
T

A
LU

M
A

C

FIGURE 9: MULTI-THREADED ARRAY PROCESSOR

Architecture Details
The following sections describe the multi-
threaded array processor in more detail.
A block diagram of the processor is shown
in Figure 9. This is a conceptual view,
which reflects the programming model. In
practice, the control and mono execution
units form a tightly-coupled pipeline which
provides overall control of the processor.

Control Unit
The control unit fetches instructions from
memory, decodes them and dispatches
them to the appropriate functional unit.

The controller includes a scheduler to provide
hardware support for multi-threaded code.
This is a vital part of the architecture for
achieving the performance potential of the
processor. Because of the highly parallel
architecture of the poly execution unit,
there can be significant latencies if all PE
cores need to read or write external data.

When part of an application stalls because
it is waiting for data from external memory,
the processor can switch to another code
thread that is ready to run. This serves to
hide the latency of accesses and keep the
processor busy.

The threads are prioritized: the processor
will run the highest priority thread that is
ready to run; a higher priority thread can
pre-empt a lower priority thread when
it becomes ready to run. Threads are
synchronized (with each other and with
hardware such as I/O engines) via
hardware semaphores.

In the simplest case of multi-threaded
code, a program would have two threads:
one for I/O and one for compute. By
pre-fetching data in the I/O thread, the
programmer (or the compiler) can ensure
the data is available when it is required by
the execution units and the processor can
run without stalling.

Execution Unit
This section describes the common
aspects of the poly and mono execution
units.

ALU Operations
Instructions for arithmetic and logical
operations are provided in several versions:

nn Various sizes: 1, 2, 4 and 8 bytes;
nn Various data types: signed and

unsigned integers, and single and
double-precision floating point;

nn Hardware support for floating point and
DSP functions.

Status Register
Associated with the ALU is a status register;
this contains five status bits that provide
information about the result of the last ALU
operation. When set, these bits indicate:

nn Most significant bit set
nn Carry generated
nn Overflow generated
nn Negative result
nn Zero result

Register
To support operations on data of different
widths, the registers in the PE cores can be
accessed very flexibly. The register files are
best thought of as an array of bytes which
can be addressed as registers of 1 to 8
bytes wide.

The mono and poly registers are
addressed in a consistent way using byte
addresses and widths specified in bytes.
The mono register file is 16 bits wide and
so all addresses and widths must be a
multiple of 2 bytes. There are no alignment
restrictions on poly register accesses.

7

CSX PROCESSOR ARCHITECTURE

FIGURE 10: POLY-DIE CHIP

Addressing modes
Load and store instructions are used
to transfer data between memory and
registers. In the case of the mono execution
unit, these transfer data to and from
memory external to the processor.

Poly loads and stores transfer data
between the PE core register file and PE
core memory. Data is transferred between
the PE cores and external memory using
the I/O functions described later.

There are three addressing modes for
loads and stores which can be used for
both mono and poly data.These are:

Direct: The address to be read/written is
specified as an immediate value.

Indirect: The address is specified in a
register.

Indexed: The address is calculated from
adding an offset to a base address in a
register. The offset must be an immediate
value.

Conditional code
The main difference between code for the
mono and the poly execution units is the
way that conditional code is executed. The
mono unit uses conditional jumps to
branch around code, typically based on
the result of the previous instructions. This
means that mono conditions affect both
mono and poly operations. This is just like
a standard RISC architecture.

The poly unit uses a set of enable bits
(described in more detail below) to control
whether each PE core will have its state
changed by any instructions it executes.
This provides per-PE core predicated
operation. The enable state can be changed
based on the result of a previous operation.

The following sections describe the
architectural features of the two execution
units in more detail.

Mono execution unit
As well as handling mono data, the mono
unit is responsible for program flow control
(branching), thread switching and other
control functions. The mono execution unit
also has overall control of I/O operations.
Results from these operations are returned
to registers in the mono unit.

Conditional execution
The mono execution unit handles conditional
execution in the same way as a traditional
processor. A set of conditional and
unconditional jump instructions use the
result of previous operations to jump over
conditional code, back to the start of
loops, etc.

Multi-threaded execution
The processor supports several hardware
threads. There is a hardware scheduler in
the control unit and the mono execution
unit maintains multiple banks of critical
registers for fast context switching.

The threads are prioritized (0 being highest
priority). Control of execution between the
threads is performed using semaphores
under programmer control. Higher priority
threads will only yield to lower priority threads
when they are stalled on yielding instructions
(such as semaphore wait operations).
Lower priority threads can be pre-empted
at any time by higher priority ones.

Semaphores are special registers that can
be incremented or decremented with
atomic (non-interruptible) operations
called signal and wait. A signal instruction
will increment a semaphore. A wait will
decrement a semaphore unless the
semaphore is 0, in which case it will stall
until the semaphore is signalled by another
thread. Semaphores can also be accessed
by hardware units (such as the I/O controllers)
to synchronize these with software.

8

Poly Execution Unit
The poly execution unit is an array of Poly
Execution (PE) cores. Each PE core in the
poly execution unit is similar to a VLIW
processor and consists of:

nn Multiple function units such as:
ll Floating point unit (FPU)
ll Integer multiply-accumulate (MAC)

unit
ll Integer arithmetic/logic unit (ALU)

nn A register file
nn Status and enable registers
nn A block of fast, private memory
nn An inter-PE core communication path
nn One or more I/O channels

Load and store instructions move data
between a PE core register file and PE
core memory, while the function units
operate on data in the register file. Data is
transferred in to, and out of, the PE cores
memory using I/O instructions.

The multiple functional units can operate
concurrently so that, for example, an integer
operation can be performed simultaneously
with a floating point operation.

Conditional behavior
The SIMD nature of the PE core array
prohibits each PE core having its own
branch unit (branching being handled by
the mono execution unit). Instead, each PE
core can control whether its state should
be updated by the current instruction by
enabling or disabling itself; this is rather
like the predicated instructions in some
RISC CPUs.

Enable state
A PE core's enable state is determined by
a number of bits in the enable register. If all
these bits are set to one, then a PE core is
enabled and executes instructions normally.
If one or more of the enable bits is zero,
then the PE core is disabled and most
instructions it receives will be ignored
(instructions on the enable state itself, for
example, are not disabled).

The enable register is treated as a stack,
and new bits can be pushed onto the top
of the stack allowing nested predicated
execution. The result of a test, either a 1 or
a 0, is pushed onto the enable stack. This
bit can later be popped from the top of the
stack to remove the effect of that condition.
This makes handling nested conditions
and loops very efficient. Note that,
although the enable stack is of fixed size,
the compiler handles saving and restoring
the state automatically, so there are no
limitations on compiled code. When
programming at the assembler level, it is
the programmer’s responsibility to manage
the enable stack.

Instructions
Conditional execution on the poly execu-
tion unit is supported by a set of poly con-
ditional instructions: if, else, endif,
etc. These manage the enable bits to allow
different PE cores to execute each branch
of an if...else construct in C, for example.
These also support nested conditions by
pushing and popping the condition value
on the enable stack.

As a simple example, consider the following
code fragment:

// disable all PEs where reg 32 is
non-zero

if.eq 32:p1, 0 // pushing result
onto stack

// increment reg 8 on enabled PEs

add 8:p4, 8:p4, 1

// return all PEs to original
enable state

endif // pop enable stack

Here, the initial if instruction compares
the two operands on each PE core. If they
are equal it pushes 1 onto the top of the
enable stack. This leaves those PE cores
enabled if they were previously enabled
and disabled if they were already disabled.
If the two operands are not equal, a 0 is
pushed onto the stack, this disables the
corresponding PE cores.

9

CSX PROCESSOR ARCHITECTURE

The following add instruction is sent to all
PE cores, but only acted on by those that
are still enabled. Finally, the endif
instruction pops the enable stack, returning
all PE cores to their original enable state.

Normally, none of this is visible to the
programmer writing code in C: conditional
code just does what’s expected.

Forced loads and stores
Poly loads and stores are normally
predicated by the enable state of the PE
core. However, because there are instances
where it is necessary to load and store
data regardless of the current enable state,
the instruction set includes forced loads
and stores. These will change the state of
the PE core even if it is disabled.

I/O mechanisms
I/O instructions transfer data between PE
core memory and devices outside the CSX
processor. Programmed I/O (PIO) extends
the load/store model: it is used for transfers
of small amounts of data between PE core
memory and external memory.

I/O architecture
The I/O systems consist of three parts:
Controller, Engine and Node.
Controller: The PIO controller decodes I/O
instructions and coordinates with the rest
of the control unit and the mono processor.
The controller synchronizes with software
threads via semaphores.
Engine: The I/O engines are basically DMA
engines which manage the actual data
transfer.
There is a Controller and Engine for each
I/O channel. A single Controller can manage
several I/O Engines.
Node: There is an I/O Node in each PE
core. The I/O Engine activates each Node
in turn allowing to serialize the data transfers.
The Nodes provide buffering of data to
minimize the impact of I/O on the
performance of the PE cores.

PIO is closely coupled to program execution
and is used to transfer data to and from the
outside world (e.g. external memory,
peripherals or the host processor).

The PIO mechanism provides a number of
addressing modes:
Direct addressed: Each PE core provides
an external memory address for its data.
This provides random access to data.
Strided: The external memory address is
incremented for each PE core.
In each case, the size of data transferred to
each PE core is the same.

When multiple PE cores are accessing
memory then the transfers can be
consolidated so as to perform the minimum
number of external accesses. So, for
example, if half the processors are reading
one location and the other half reading
another, then only two memory reads
would be performed. In fact, consolidation
can be better than that: because the
bus transfers are packetized, even
transfers from nearby addresses can be
effectively consolidated.

Swazzle
Finally, the PE cores are able to communicate
with one another via what is known as the
swazzle path that connects the register file
of each PE core with the register files of its
left and right neighbors. On each cycle,
PE coren can perform a register-to-
register transfer to either its left or right
neighbor, PE coren-1 or PE coren+1, while
simultaneously receiving data from the
other neighbor.

Instructions are provided to shift data left or
right through the array, and to swap data
between adjacent PE cores.

The enable state of a PE core affects its
participation in a swazzle operation in the
following way: if a PE core is enabled, then its
registers may be updated by a neighboring
PE core, regardless of the neighboring
PE core’s enable state. Conversely, if a PE
core is disabled, its register file will not
be altered by a neighbor under any
circumstance. A disabled PE core will still
provide data to an enabled neighbor.

The data written into the registers of the PE
cores at the ends of the swazzle path can
be set by the mono execution unit.
Alternatively, the two ends can be connected
to form a circular path.

10

Host Interface
The interfaces to the host system are used
for three basic purposes: initialization and
booting, access to host services and
debugging.

Initialization
There are a number of stages of initialization
required to start code running on the
processor. These are normally handled
transparently by the development tools,
but an overview is provided here as back-
ground information.

First, the application code (including boot-
strap) is loaded into memory.

Next, the host system initializes the state of
the control unit, caches and mono execution
unit by a series of writes to the host/debug
port. The last of these specify the start
address of the code to execute and tell the
processor to start fetching instructions.

Finally, the boot code does any remaining
initialization of the processor including the
PE cores (e.g. setting the PE core numbering
before running the application code.

Host services
Once the application program is running it
will need to access host resources, such
as the file system. To support this, a protocol
is defined between the run-time libraries
and a device driver on the host system.
This is interrupt based and allows the code
running on the processor to make calls to
an application or the operating system
running on the host.

Debugging
The processor includes hardware support
for breakpoints and single-stepping. These
are controlled via registers accessed
through the control interface.

This interface also allows the debugger,
running on the host, to interrogate and
update the state of the processor to support
fully interactive debugging.

Case Study
To illustrate the use of the multi-threaded
array processor in a real device, the
architecture of the CSX600 is described in
this section.

The CSX600 is fabricated on a 0.13µ
process and runs at clock speeds between
200 MHz and 250 MHz.

CSX600 architecture

Processor core
The MTAP processor in the CSX600 has
the following specification:
General
nn 8 Kbyte instruction cache: 4-way,

512 lines x 4 instructions, with manual
and auto pre-fetch

nn 4 Kbyte data cache: 4-way,
256 lines x 16 bytes

11

CSX PROCESSOR ARCHITECTURE

FIGURE 11: CSX600 SYSTEM-ON-CHIP (SOC)
ARCHITECTURE

Mono execution unit
nn 64 bit FPU
nn 64 byte register file
nn Support for 8 threads

Poly execution unit
nn Array of 96 PE cores
nn Superscalar 64 bit FPU on each PE core
nn 16 bit MAC per PE core
nn 6 Kbytes SRAM per PE core
nn 128 byte register file per PE core

Performance
nn Over 25 GFLOPS single or

double precision
nn 25,000 MIPS
nn 25 GMAC/s integer multiply-accumulate
nn 96 Gbytes/s internal memory bandwidth

Memory system
External memory is connected via a 64 bit
DDR2 SDRAM interface. When used with
72 bit wide DRAM modules this provides
Error Checking and Correction (ECC).
Each processor supports up to 4 Gbytes of
local DRAM.

The processor supports 64 bit addressing
so that large data sets can be processed.
The 64 bit address space is flexibly
mapped into a 48 bit physical address
space. For embedded systems and
backward compatibility, a simple 32 bit
addressing mode is provided.

On-chip SRAM is included for fast access
to frequently accessed code and data.

The integrated DMA controller can be
programmed to transfer data to and from
the external memory interface and any
other device on the ClearConnect
Network-on-Chip (NoC, whether on the
same chip or elsewhere in the system).

Bridge ports
The NoC is made available at two ports
which can be interconnected with no glue
logic to construct multi-processor systems.

This enables system performance to
be scaled to meet the requirements of
the application.

These ports use double data rate
interfaces to minimize the pin count. If not
fully used, they can be selectively turned
off to reduce power consumption.

Data can be transferred directly from one
bridge port to the other without impacting
other transactions on the ClearConnect
NoC. This allows efficient multi-processor
systems to be constructed.

The bridge ports can also be used to
connect to a Field Programmable Gate
Array (FPGA) to provide other
functions and interfaces.

Interrupt and Semaphone Unit
(ISU)
The Interrupt and Semaphore Unit
supports the synchronization of threads
with external events. Both pin and message
signaled interrupts are supported for flexible
support of multiple devices in various
host environments.

Host/debug port (HDP)
A host interface allows the CSX600 to
communicate with, and be controlled by,
the system’s host processor. This port can
also be used as a hardware and software
debug port as it provides full access to all
the internal registers on the device.

ClearConnect® NoC
The various subsystems are interconnected
using the ClearConnect on-chip network to
interface the subsystems on the chip.
This supports multiple independent data
transfers; for example, the processor can
access data in the on-chip SRAM at the
same time as data is transferred to the
DDR2 interface from one of the bridge ports.

12

Applications
High Performance Computing
ClearSpeed’s CSX processors are used as
application accelerators for HPC, delivering
performance that unlocks the development
of completely new algorithms for applications
such as financial modeling and a host of
scientific research disciplines. Because of
its low power consumption, the technology
can be applied to systems from
workstations to clusters delivering compute
performance beyond the limits of
standard systems.

Application Acceleration
In HPC systems, the CSX600 is typically
used as a coprocessor to accelerate the
inner loops of an application. The CSX600-
based ClearSpeed Advance accelerator
board is shown in Figure 12.

The use of the CSX600 as a coprocessor is
illustrated in Figure 13. Here an application is
running on the host system. Key
functions of the application are ported to
the CSX600 and the main program
effectively calls the code on the CSX600
via a communication library. This sends
the data to be processed from host memory
to the ClearSpeed Advance board and
waits for the results. By pipelining multiple
operations, it is possible to overlap the
communication with computation.

Libraries will be provided to allow the code
on the coprocessor to be called from C,
C++ or FORTRAN.

13

CSX PROCESSOR ARCHITECTURE

FIGURE 12: CLEARSPEED ADVANCE BOARD

Host OS

General purpose CPU
e.g. AMD, Intel

CSX600 code
for ClearSpeed

Advance™ Accelerator

S
of

tw
ar

e
H

ar
dw

ar
e

Shared library APIs
e.g. BLAS, LAPACK etc

Host Application

User's View

Shared libraries
for CPU

e.g. ACML, MKL

CSXL Shared library
runtime suite for

Advance™ accelerator

Device driver

FIGURE 13: CLEARSPEED ADVANCETM APPLICATION ACCELERATION

Example: Drug Docking
The developing field of in-silico drug
discovery uses computer simulation rather
than the ‘wet science’ of test tubes to
explore the behavior of potential new drugs.

Bristol University’s Department of
Biochemistry has produced their own
software, called Dockit, for this application.
This FORTRAN code performs molecular
simulation of the interactions of molecules.
For example, the docking of a ligand
molecule (drug) into a protein.

This simulation requires the calculation of
the interaction energies of all atoms of one
molecule with all the atoms of the other.
This process is repeated for thousands of
configurations of the molecules. This
naturally results in a massively data-
parallel problem ideally suited to the
CSX processor architecture.

ClearSpeed worked with the team at Bristol
University to identify the functions in the
program that take the most compute time.
These were then rewritten in C for the
CSX600 and the original FORTRAN sub-
routines replaced with code to communicate
with the CSX processor; passing the data
to be processed and getting the results back.

On the CSX600, each PE core is allocated
a different configuration of protein and
ligand, and performs all of the atom-atom
interaction energy calculations. The memory
available within a PE core is insufficient to
hold the details of an entire molecule;
however, the molecule can be split into
pieces and each piece processed in turn.
The atom data is effectively ‘streamed’
through the PE cores. The fetching of
atoms can be efficiently overlapped with
the atom-atom processing. However, even
with the floating point accelerated
processor the task is compute bound so
I/O bandwidth is not an issue.

The calculations currently performed in most
applications of this sort are a simplistic

model of the interaction of atoms. The
processing power that the CSX600 makes
available will allow more sophisticated
models to be developed (e.g. taking into
account quantum effects), improving the
accuracy and thus value of the results.

Embedded systems
The low power dissipation of the processor
is also a key benefit in embedded systems
where it can be used as a DSP in applications
such as defense (e.g. radar and sonar
processing) and medical imaging.

Communications
The array processor architecture is ideally
suited to packet processing for networking
systems as well as portable and satellite
communications.

Network processing
In this case, the data to be processed
consists of a stream of packets of variable
size. Each packet consists of header
information and a data payload. In its
simplest form, the problem is to examine
various fields in the header, do some sort of
lookup function and route the packet to the
appropriate output port. This processing
must be done in real time.

In the network processing application, an
I/O channel can be used for continuously
streaming packets into, and out of, PE core
memory. Within each PE core, the software
maintains several buffers so that, while
one set of packets is being processed,
the previous set can be output and,
simultaneously, the next set can be loaded.

PIO channels can be used by the PE cores
to send requests to another subsystem that
handles lookups. This could on-chip or off-
chip, using table lookup hardware or a
solution such as Content Addressable
Memory (CAM).

14

Software development kit
For customers who need greater flexibility
or wish to port proprietary code, ClearSpeed
provides a set of software development tools.

The ClearSpeed Software Development
Kit (SDK) is a suite of tools and libraries
designed to enable the rapid development
of application software for CSX processors.
The tools are centered around a C compiler
and the industry-standard GDB symbolic
debugger.

Conclusion
The twin demands of functionality and
ever increasing data volumes demand
powerful yet flexible processing solutions.
ClearSpeed’s CSX processors supply a
solution to these next generation needs in
the form of a hardware and software
platform that can be rapidly integrated
with new and existing industry standard
systems.

15

CSX PROCESSOR ARCHITECTURE

FIGURE 14: CLEARSPEED DEBUGGER

CLEARSPEED TECHNOLOGY

www.clearspeed.com

Copyright 2007 ClearSpeed Technology plc (“ClearSpeed”).

All rights reserved.

All information in this document is provided only as general information
in connection with ClearSpeed products. Except as provided in
ClearSpeed’s terms and conditions of sale for such products,
ClearSpeed assumes no liability whatsoever, and ClearSpeed
disclaims any express or implied warranty relating to sale and/or use
of ClearSpeed products, including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement
of any patent, copyright, or other intellectual property right.
ClearSpeed may make changes to specifications, product
descriptions, and plans at any time, without notice.

ClearSpeed, ClearConnect and Advance are trademarks or
registered trademarks of ClearSpeed Technology plc or its group
companies. All other marks are the property of their respective owners.

PN-1110-0702

